【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.
(1)求該拋物線的解析式;
(2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.
(3)在(2)的條件下,點Q是線段OB上一動點,當△BPQ與△BAC相似時,求點Q的坐標.
【答案】(1) ;(2)存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;(3)Q的坐標或.
【解析】
(1)將A(1,0)、B(4,0)、C(0,3)代入y=ax2+bx+c,求出a、b、c即可;
(2)四邊形PAOC的周長最小值為:OC+OA+BC=1+3+5=9;
(3)分兩種情況討論:①當△BPQ∽△BCA,②當△BQP∽△BCA.
解:(1)由已知得,
解得
所以,拋物線的解析式為;
(2)∵A、B關于對稱軸對稱,如下圖,連接BC,與對稱軸的交點即為所求的點P,此時PA+PC=BC,
∴四邊形PAOC的周長最小值為:OC+OA+BC,
∵A(1,0)、B(4,0)、C(0,3),
∴OA=1,OC=3,BC=5,
∴OC+OA+BC=1+3+5=9;
∴在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;
(3)如上圖,設對稱軸與x軸交于點D.
∵A(1,0)、B(4,0)、C(0,3),
∴OB=4,AB=3,BC=5,
直線BC:,
由二次函數(shù)可得,對稱軸直線,
∴,
①當△BPQ∽△BCA,
,
,
,
,
②當△BQP∽△BCA,
,
,
,
,
,
綜上,求得點Q的坐標或
科目:初中數(shù)學 來源: 題型:
【題目】暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰(zhàn)士前往搶險. 半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結果兩隊同時到達.已知搶險隊的出發(fā)地與災區(qū)的距離為90千米,兩隊所行路線相同,問兩隊的平均速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米. 現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求這條拋物線的解析式;
(3)若要搭建一個矩形“支撐架”AD- DC- CB,使C、D點在拋物線上,A、B點在地面OM上,則這個“支撐架”總長的最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為上一點,以為圓心,長為半徑作圓,與相切于點,過點作交的延長線于點,且.
(1)求證:為的切線;
(2)若, ,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內,將正方形ABCD沿圓的內壁作無滑動的滾動.當滾動一周回到原位置時,點C運動的路徑長為__ _.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點為網(wǎng)格線的交點).
(1)將△ABC先向下平移3個單位長度,再向右平移4個單位長度后得到△A1B1C1.畫出平移后的圖形;
(2)將△ABC繞點A1順時針旋轉90°后得到△A2B2C2.畫出旋轉后的圖形;
(3)借助網(wǎng)格,利用無刻度直尺畫出△A1B1C1的中線A1D1(畫圖中要體現(xiàn)找關鍵點的方法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】旋轉變換是解決數(shù)學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.
(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,
①求∠DAF的度數(shù);
②求證:△ADE≌△ADF;
(2)如圖2,當α=90°時,猜想BD、DE、CE的數(shù)量關系,并說明理由;
(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com