【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OPAD,OPAB的延長線交于點P,過B點的切線交OP于點C.

(1)求證:∠CBP=ADB.

(2)若OA=2,AB=1,求線段BP的長.

【答案】(1)證明見解析;(2)BP=7.

【解析】

(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質得到∠OBC=90°,然后利用等量代換進行證明;

(2)證明AOP∽△ABD,然后利用相似比求BP的長.

(1)證明:連接OB,如圖,

AD是⊙O的直徑,

∴∠ABD=90°

∴∠A+ADB=90°,

BC為切線,

OBBC,

∴∠OBC=90°,

∴∠OBA+CBP=90°,

OA=OB,

∴∠A=OBA,

∴∠CBP=ADB;

(2)解:∵OPAD,

∴∠POA=90°

∴∠P+A=90°,

∴∠P=D,

∴△AOP∽△ABD,

,即,

BP=7.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是( )

A. 有兩邊和其中一邊的對角對應相等的兩個三角形全等

B. 兩條平行直線被第三條直線所截,則一組同旁內角的平分線互相垂直

C. 三角形的一個外角等于兩個內角的和

D. 等邊三角形既是中心對稱圖形,又是軸對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,是由一個等邊ABE和一個矩形BCDE拼成的一個圖形,其點B,CD的坐標分別為(1,2),(1,1),(3,1).

(1)直接寫出E點和A點的坐標;

(2)試以點B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為31;

(3)直接寫出圖形A1B1C1D1E1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各組條件中,能夠判定△ABC≌△DEF 的是( )

A. A=∠D,∠B=∠E,∠C=∠FB. ABDE,BCEF,∠A=∠D

C. B=∠E90°,BCEFACDFD. A=∠D,ABDF,∠B=∠E

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A-1,5)、B-1,0)、C-4,3).

1)直接寫出ABC 的面積為 ;

2)在圖形中作出ABC 關于y 軸的對稱圖形△A1B1C1,并直接寫出△A1B1C1的三個頂點的坐標:A1 ),B1 ),C1 );

3)是否存在一點 P ACAB 的距離相等,同時到點 A、點 B 的距離也相等.若存在保留作圖痕跡標出點 P 的位置,并簡要說明理由;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,,,FAB邊上的中點,點D、E分別在ACBC邊上運動,且保持,連接DEDF、EF在此運動變化的過程中,下列結論:(1)是等腰直角三角形;四邊形CDFE不可能為正方形,(3長度的最小值為4;(4)連接CFCF恰好把四邊形CDFE的面積分成12兩部分,則其中正確的結論個數(shù)是

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD中,A1,3, B2,-1, C5,-5

1D的坐標為____________.

2)若經(jīng)過原點的一條直線平分□ABCD的面積,求此直線的解析式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線y=-x+3x軸、y軸相交于A、B兩點,點C在線段OA上,將線段CB繞著點C順時針旋轉90°得到CD,此時點D恰好落在直線AB上,過點DDEx軸于點E

1)求證:△BOC≌△CED;

2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當B'C'經(jīng)過點D時,求△BCD平移的距離及點D的坐標;

3)若點Py軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雅美服裝廠有A種布料70mB種布料52米.現(xiàn)計劃用這兩種布料生產M、N兩種型號的時裝共80套,已知做一套M型號的時裝共需A種布料0.6m,B種布料0.9m;做一套N型號的時裝需要A種布料1.1m,B種布料0.4m

1)設生產xM型號的時裝,寫出x應滿足的不等式組;

2)有哪幾種符合題意的生產方案?請你幫助設計出來.

查看答案和解析>>

同步練習冊答案