觀察下列式子:
1
1
+
1
2
=
1+2
1×2
=
3
2
    
1
2
+
1
3
=
2+3
2×3
=
5
6
      
1
3
+
1
4
=
3+4
3×4
=
7
12

請根據(jù)你發(fā)現(xiàn)的規(guī)律計算:1-
3
2
+
5
6
-
7
12
+…-
19
90
+
21
110
分析:根據(jù)題目信息,把所給分數(shù)都寫成兩個分數(shù)的和的形式,然后根據(jù)有理數(shù)的加減混合運算進行計算即可得解.
解答:解:根據(jù)題意,1-
3
2
+
5
6
-
7
12
+…-
19
90
+
21
110

=1-(1+
1
2
)+(
1
2
+
1
3
)-(
1
3
+
1
4
)+…-(
1
9
+
1
10
)+(
1
10
+
1
11

=1-1-
1
2
+
1
2
+
1
3
-
1
3
-
1
4
+…-
1
9
-
1
10
+
1
10
+
1
11

=
1
11
點評:本題是對數(shù)字變化規(guī)律的考查,仔細觀察題目信息,把所給的分數(shù)都化為兩個分子是1的分數(shù)的和是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列式子:
1
1
(
1
2
-
1
3
)
=
1
2
2
3
;
1
2
(
1
3
-
1
4
)
=
1
3
3
8
;
1
3
(
1
4
-
1
5
)
=
1
4
4
15

則第n個式子是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列式子:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

(1)請你根據(jù)上述規(guī)律寫出第n個式子
(2)利用規(guī)律解方程:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)
+
1
(x+4)(x+5)
=
2x-1
x(x+5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

觀察下列式子:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

(1)請你根據(jù)上述規(guī)律寫出第n個式子
(2)利用規(guī)律解方程:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+
1
(x+3)(x+4)
+
1
(x+4)(x+5)
=
2x-1
x(x+5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列式子:
1
1
(
1
2
-
1
3
)
=
1
2
2
3
;
1
2
(
1
3
-
1
4
)
=
1
3
3
8
1
3
(
1
4
-
1
5
)
=
1
4
4
15

則第n個式子是______.

查看答案和解析>>

同步練習(xí)冊答案