【題目】在銳角ABC中,AB=4,BC=5,ACB=45°,將ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△DBE

(1)當(dāng)旋轉(zhuǎn)成如圖,點(diǎn)E在線段CA的延長(zhǎng)線上時(shí),則CED的度數(shù)是   度;

(2)當(dāng)旋轉(zhuǎn)成如圖,連接AD、CE,若ABD的面積為4,求CBE的面積;

(3)點(diǎn)M為線段AB的中點(diǎn),點(diǎn)P是線段AC上一動(dòng)點(diǎn),在ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)過(guò)程中,點(diǎn)P的對(duì)應(yīng)點(diǎn)P′,連接MP′,如圖,直接寫(xiě)出線段MP′長(zhǎng)度的最大值和最小值.

【答案】(1)90;(2)S△CBE=;(3)線段MP'的最大值為7,最小值為﹣2.

【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知DEC=45°,再由等邊對(duì)等角得∠BEC=45°,則∠CED=90°;

2)由△ABC≌△DBE得出BA=BDBC=BE,進(jìn)而得出,證明△ABD∽△CBE,根據(jù)面積比等于相似比的平方求出△CBE的面積;

3)作輔助線,當(dāng)點(diǎn)PF處時(shí)BP最小,BG最小,MP'最小;當(dāng)點(diǎn)P在點(diǎn)C處時(shí)BP最大,BH最大,MP'最大,代入計(jì)算即可得出結(jié)論.

試題解析:(1)由旋轉(zhuǎn)得DEB=ACB=45°,BC=BE,∴∠ACB=BEC=45°,∴∠CED=90°.故答案為:90;

2∵△ABC≌△DBE,BA=BD,BC=BE,ABC=DBE,∵∠ABD=CBE,∴△ABD∽△CBE,=(2=SABD=4,SCBE=;

3MAB的中點(diǎn),BM=AB=2如圖③過(guò)點(diǎn)BBFAC,F為垂足∵△ABC為銳角三角形,∴點(diǎn)F在線段AC上.在RtBCF,BF=BC×sin45°=B為圓心,BF為半徑畫(huà)圓交ABG,BP'有最小值BGMP'的最小值為MG=BGBM=2,B為圓心,BC為半徑畫(huà)圓交AB的延長(zhǎng)線于H,BP'有最大值BH.此時(shí)MP'的最大值為BM+BH=2+5=7,∴線段MP'的最大值為7,最小值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線MNAC于點(diǎn)D,交AB于點(diǎn)E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長(zhǎng)為20,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】莊子說(shuō):“一尺之椎,日取其半,萬(wàn)世不竭”.這句話(文字語(yǔ)言)表達(dá)了古人將事物無(wú)限分割的思想,用圖形語(yǔ)言表示為圖1,按此圖分割的方法,可得到一個(gè)等式(符號(hào)語(yǔ)言):1=

圖2也是一種無(wú)限分割:在△ABC中,∠C=90°,∠B=30°,過(guò)點(diǎn)C作CC1⊥AB于點(diǎn)C1,再過(guò)點(diǎn)C1作C1C2⊥BC于點(diǎn)C2,又過(guò)點(diǎn)C2作C2C3⊥AB于點(diǎn)C3,如此無(wú)限繼續(xù)下去,則可將利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假設(shè)AC=2,這些三角形的面積和可以得到一個(gè)等式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星光廚具店購(gòu)進(jìn)電飯煲和電壓鍋兩種電器進(jìn)行銷售其進(jìn)價(jià)與售價(jià)如表

進(jìn)價(jià)(元/臺(tái))

售價(jià)(元/臺(tái))

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購(gòu)進(jìn)這兩種電器共30臺(tái),用去了5600元,并且全部售完,問(wèn)廚具店在該買(mǎi)賣(mài)中賺了多少錢(qián)?

2)為了滿足市場(chǎng)需求,二季度廚具店決定采購(gòu)電飯煲和電壓鍋共50臺(tái),且電飯煲的數(shù)量不大于電壓鍋的,請(qǐng)你通過(guò)計(jì)算判斷,如何進(jìn)貨廚具店賺錢(qián)最多?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn)為B′,連接AB′,CB′,CB′ADF點(diǎn).

1)如圖1,∠ABC=90°,求證:FCB′的中點(diǎn);

2)小宇通過(guò)觀察、實(shí)驗(yàn)、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:

想法1:過(guò)點(diǎn)B′B′GCDADG點(diǎn),只需證三角形全等;

想法2:連接BB′ADH點(diǎn),只需證HBB′的中點(diǎn);

想法3:連接BB′,BF,只需證∠B′BC=90°

請(qǐng)你參考上面的想法,證明FCB′的中點(diǎn).(一種方法即可)

3)如圖3,當(dāng)∠ABC=135°時(shí),AB′CD的延長(zhǎng)線相交于點(diǎn)E,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按如圖所示的程序計(jì)算.若開(kāi)始輸入的的值為18,我們發(fā)現(xiàn)第1次得到的結(jié)果為9,第2次得到的結(jié)果為14,第3次得到的結(jié)果為7.……,請(qǐng)你探索第2019次得到的結(jié)果為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,如果對(duì)角線ACBD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.

1)在“平行四邊形、矩形、菱形,正方形”中, 一定是等角線四邊形(填寫(xiě)圖形名稱);

2)若MN、PQ分別是等角線四邊形ABCD四邊AB、BCCD、DA的中點(diǎn),當(dāng)對(duì)角線AC、BD還要滿足 時(shí),四邊形MNPQ是正方形;

3)如圖2,已知△ABC中,∠ABC90°,AB4,BC3D為平面內(nèi)一點(diǎn).若四邊形ABCD是等角線四邊形,且ADBD,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E、F分別是ABCD上的點(diǎn),點(diǎn)GBC的延長(zhǎng)線上一點(diǎn),且∠B=DCG=D 則下列判斷錯(cuò)誤的是(

A.BEF=EFDB.A=BCFC.AEF=EBCD.BEF+EFC=180°

查看答案和解析>>

同步練習(xí)冊(cè)答案