【題目】如圖是小江家的住房戶型結(jié)構(gòu)圖.根據(jù)結(jié)構(gòu)圖提供的信息,解答下列問題:
(1)用含a、b的代數(shù)式表示小江家的住房總面積S;
(2)小江家準(zhǔn)備給房間重新鋪設(shè)地磚.若臥室所用的地磚價格為每平方米50元;衛(wèi)生間、廚房和客廳所用的地磚價格為每平方米40元.請用含a、b的代數(shù)式表示鋪設(shè)地磚的總費用W;
(3)在(2)的條件下,當(dāng)a=6,b=4時,求W的值.
【答案】(1) S =8a-3b;(2)W=320a-150b+240;(3)1560
【解析】
(1)根據(jù)圖形及長方形面積公式求面積;
(2)分別表示出臥室及衛(wèi)生間、廚房和客廳的面積,再乘以對應(yīng)價格,列式化簡即可;
(3)把a=6,b=4代入(2)中所得式子進(jìn)行計算即可得出結(jié)果.
解:(1)S =8a-3b;
(2)由題可得,臥室面積為3(8-b)平方米,衛(wèi)生間、廚房和客廳的總面積為8(a-3)平方米,
∴W=3(8-b)×50+8(a-3)×40
=1200-150b+320a-960
=320a-150b+240,
(3)當(dāng)a=6,b=4時,
W=320×6-150×4+240=1920-600+240=1560(元).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形中滿足條件的是( )
①平行四邊形;②菱形;③矩形;④對角線互相垂直的四邊形.
A. ①③B. ②③C. ③④D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程 (m-1)x-mx+1=0。
(1)證明:不論m為何值時,方程總有實數(shù)根;
(2)若m為整數(shù),當(dāng)m為何值時,方程有兩個不相等的整數(shù)根。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮步行上山游玩,設(shè)小亮出發(fā)x min加后行走的路程為y m.圖中的折線表示小亮在整個行走過程中y與x的函數(shù)關(guān)系,
(1)小亮行走的總路程是____________m,他途中休息了____________min.
(2)當(dāng)5080時,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是一塊含有45的直角三角板,四邊形DEFG是長方形,D、G分別在AB、AC上,E、F在BC上。BC=16,DG=4,DE=6,現(xiàn)將長方形 DEFG向右沿BC方向平移,設(shè)水平移動的距離為d,長方形與直角三角板的重疊面積為S,
(1)當(dāng)水平距離d是何值時,長方形 DEFG恰好完全移出三角板;
(2)在移動過程中,請你用含有d的代數(shù)式表示重疊面積S,并寫出相應(yīng)的d的范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F,點O是EF中點,連結(jié)BO井延長到G,且GO=BO,連接EG,FG
(1)試求四邊形EBFG的形狀,說明理由;
(2)求證:BD⊥BG
(3)當(dāng)AB=BE=1時,求EF的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義新知)在數(shù)軸上,點M和點N分別表示數(shù)x1和x2 ,可以用絕對值表示點M、N兩點間的距離d (M,N),即d (M,N)=|x1-x2|.
(初步應(yīng)用)
(1)在數(shù)軸上,點A、B、C分別表示數(shù)-1、2、x, 解答下列問題:
①d (A,B)= ;
②若d(A,C)=2,則x的值為 ;
③若d(A,C)+d(B,C)=d(A,B),且x為整數(shù),則x的取值有 個.
(綜合應(yīng)用)
(2)在數(shù)軸上,點D、E、F分別表示數(shù)-2、4、6.動點P沿數(shù)軸從點D開始運動,到達(dá)F點后立刻返回,再回到D點時停止運動.在此過程中,點P的運動速度始終保持每秒2個單位長度.設(shè)點P的運動時間為t秒.
①當(dāng)t= 時,d(D,P)=3;
②在整個運動過程中,請用含t的代數(shù)式表示d(E,P).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E是ABCD中BC邊的中點,連接AE并延長AE交DC的延長線于點F.
(1)求證:△ABE≌△FCE.
(2)連接AC、BF,若∠AEC=2∠ABC,求證:四邊形ABFC為矩形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=α,∠ABC的平分線與∠ACD的平分線交于點A1,得∠A1,則∠A1=_____.∠A1BC的平分線與∠A1CD的平分線交于點A2,得∠A2,…,∠A2009BC的平分線與∠A2009CD的平分線交于點A2010,得∠A2010,則∠A2010=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com