【題目】如圖,在矩形ABCD中,AB=6,BC=8,點O為對角線BD的中點,點E為邊AD上一點,連接OE,將△DOE沿OE翻折得到△OEF,若OF⊥AD于點G,則OE=______.
【答案】
【解析】
由矩形的性質(zhì)和勾股定理得出BD==10,得出OD=5,由折疊的性質(zhì)得:∠F=∠ADB,OF=OD=5,證出OG是△ABD的中位線,△GEF∽△ABD,得出OG=AB=3,=,求出GE=,在Rt△OGE中,由勾股定理即可得出結(jié)果.
解:∵四邊形ABCD是矩形,
∴∠A=90°,AD=BC=8,
∴AB⊥AD,BD==10,
∵點O為對角線BD的中點,
∴OD=5,
由折疊的性質(zhì)得:∠F=∠ADB,OF=OD=5,
∵OF⊥AD,∴OF∥AB,∠OGE=∠FGE=90°=∠A,
∴OG是△ABD的中位線,△GEF∽△ABD,
∴OG=AB=3,=,
∴FG=OF-OG=2,=,
∴GE=,
在Rt△OGE中,由勾股定理得:OE===;
故答案是:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與直線有兩個不同的交點.下列結(jié)論:①;②當(dāng)時,有最小值;③方程有兩個不等實根;④若連接這兩個交點與拋物線的頂點,恰好是一個等腰直角三角形,則;其中正確的結(jié)論的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠BAC.
(1)如圖,在平面內(nèi)任取一點O;
(2)以點O為圓心,OA為半徑作圓,交射線AB于點D,交射線AC于點E;
(3)連接DE,過點O作線段DE的垂線交⊙O于點P;
(4)連接AP,DP和PE.根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中:
①△ADE是⊙O的內(nèi)接三角形; ② ;
③ DE=2PE; ④ AP平分∠BAC.
所有正確結(jié)論的序號是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平而直角坐標(biāo)系中,函數(shù)(其中,)的圖象經(jīng)過平行四邊形的頂點,函數(shù)(其中)的圖象經(jīng)過頂點,點在軸上,若點的橫坐標(biāo)為1,的面積為.
(1)求的值:
(2)求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展以“學(xué)習(xí)朱子文化,弘揚理學(xué)思想”為主題的讀書月活動,并向?qū)W生征集讀后感,學(xué)校將收到的讀后感篇數(shù)按年級進(jìn)行統(tǒng)計,繪制了以下兩幅統(tǒng)計圖(不完整).
據(jù)圖中提供的信息完成以下問題
(1)扇形統(tǒng)計圖中“八年級”對應(yīng)的圓心角是 °,并補全條形統(tǒng)計圖;
(2)經(jīng)過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=k1x+,且k1k2≠0,自變量x與函數(shù)值y滿足以下表格:
x | …… | -4 | -3 | -2 | -1 | - | 1 | 2 | 3 | 4 | …… | |
y | …… | -3 | -2 | -1 | 0 | 1 | -1 | 0 | 1 | m | n | …… |
(1)根據(jù)表格直接寫出y與x的函數(shù)表達(dá)式及自變量x的取值范圍______
(2)補全上面表格:m=______,n=______;在如圖所示的平面直角坐標(biāo)系中,請根據(jù)表格中的數(shù)據(jù)補全y關(guān)于x的函數(shù)圖象;
(3)結(jié)合函數(shù)圖象,解決下列問題:
①寫出函數(shù)y的一條性質(zhì):______;
②當(dāng)函數(shù)值y≥時,x的取值范圍是______;
③當(dāng)函數(shù)值y=-x時,結(jié)合圖象請估算x的值為______(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有( )
①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h; ⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),二次函數(shù)與一次函數(shù)(a,b為常數(shù),且).
(1)若y1,y2的圖象都經(jīng)過點(2,3),求y1,y2的表達(dá)式;
(2)當(dāng)y2經(jīng)過點時,y1也過A,B兩點:
①求m的值;
②分別在y1,y2的圖象上,實數(shù)t使得“當(dāng)或時,”,試求t的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示AB為⊙O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.
①求證:CE∥BF;
②若BD=2,且EA:EB:EC=3:1:,求△BCD的面積(注:根據(jù)圓的對稱性可知OC⊥AB).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com