【題目】如圖,已知一個由小正方體組成的幾何體的左視圖和俯視圖.
(1)該幾何體最少需要幾塊小正方體?
(2)最多可以有幾塊小正方體?
【答案】解:俯視圖中有4個正方形,那么組合幾何體的最底層有4個正方體,
(1)由左視圖第二層有1個正方形可得組合幾何體的第二層最少有1個正方體,
所以該幾何體最少需要4+1=5塊小正方體;
(2)俯視圖從上邊數(shù)第一行的第二層最多可有3個正方體,
所以該幾何體最多需要4+3=7塊小正方體.
【解析】(1)由俯視圖可得最底層的幾何體的個數(shù),由左視圖第二層正方形的個數(shù)可得第二層最少需要幾塊正方體,相加即可得到該幾何體最少需要幾塊小正方體;
(2)由俯視圖和左視圖可得第二層最多需要幾塊小正方體,再加上最底層的正方體的個數(shù)即可得到最多可以有幾塊小正方體.
【考點精析】本題主要考查了由三視圖判斷幾何體的相關知識點,需要掌握在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象如圖,下列正確的個數(shù)為( )
①bc>0;
②2a﹣3c<0;
③2a+b>0;
④ax2+bx+c=0有兩個解x1 , x2 , 當x1>x2時,x1>0,x2<0;
⑤a+b+c>0;
⑥當x>1時,y隨x增大而減。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為 ,則AK= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在課題學習后,同學們?yōu)榻淌掖皯粼O計一個遮陽蓬,小明同學繪制的設計圖如圖所示,其中,AB表示窗戶,且AB=2.82米,△BCD表示直角遮陽蓬,已知當?shù)匾荒曛性谖鐣r的太陽光與水平線CD的最小夾角α為18°,最大夾角β為66°,根據(jù)以上數(shù)據(jù),計算出遮陽蓬中CD的長是(結果精確到0.1)(參考數(shù)據(jù):sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)( 。
A.1.2米
B.1.5米
C.1.9米
D.2.5米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30° . 已知樓房高AB約是45m , 根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是m .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,某學習小組對有一內角為120°的平行四邊形ABCD(∠BAD=120°)進行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內旋轉,且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com