精英家教網(wǎng)如圖,矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點D與點B重合,折痕為EF,那么折痕EF的長為
 
分析:先判定三角形BDE是等腰三角形,再根據(jù)勾股定理及三角形相似的性質計算.
解答:精英家教網(wǎng)解:連接BD,交EF于點G,
由折疊的性質知,BE=ED,∠BEG=∠DEG,
則△BDE是等腰三角形,
由等腰三角形的性質:頂角的平分線是底邊上的高,是底邊上的中線,
∴BG=GD,BD⊥EF,
則點G是矩形ABCD的中心,
所以點G也是EF的中點,
由勾股定理得,BD=3
10
,BG=
3
10
2

∵BD⊥EF,
∴∠BGF=∠C=90°,
∵∠DBC=∠DBC,
∴△BGF∽△BCD,
則有GF:CD=BG:CB,
求得GF=
10
2
,
∴EF=
10
點評:本題利用了:1、折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;2、矩形的性質,相似三角形的判定和性質,勾股定理,等腰三角形的性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學先折出矩形紙片ABCD的對角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對角線AC翻折交AD、BC于點F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

科目:初中數(shù)學 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點C順時針旋轉60°,△A1CD1是旋轉后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點A、點C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關于x的函數(shù)關系式.


查看答案和解析>>

同步練習冊答案