【題目】1)如圖1,等腰三角形ABC中,AB=AC,DBC的中點,DEAB與點E、DFAC與點F.求證:DE= DF

2)如圖2,等腰三角形ABC中,AB=AC=13,BC=10,點DBC邊上的動點,DEAB與點EDFAC與點F.請問DE+DF的值是否隨點D位置的變化而變化?若不變,請直接寫出DE+DF的值;若變化,請說明理由.

【答案】1)見解析;(2)不變;.

【解析】

1)連接,的中點,那么就是等腰三角形底邊上的中線,根據(jù)等腰三角形三線合一的特性,可知道也是的角平分線,根據(jù)角平分線的點到角兩邊的距離相等,那么

2)連接,根據(jù)三角形的面積公式即可得到,進而求得的值.

1)證明:如圖1,連接

,點邊上的中點,

平分,

、分別垂直于點

2)解:不變.

如圖2所示:連接,

,,

底邊上的高

的面積,

,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】把下列方程化成的形式,寫出其中,的值,并計算的值:

; ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個不等實根x1x2

1)求實數(shù)k的取值范圍

2)若方程兩實根x1x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點E在⊙O上,過點E的切線與AB的延長線交于點D,連接BE,過點OBE的平行線,交⊙O于點F,交切線于點C,連接AC

(1)求證:AC是⊙O的切線;

(2)連接EF,當∠D=  °時,四邊形FOBE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CDMN于點D,連接BD.

(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關(guān)系.經(jīng)過觀察思考,小明出一種思路:如圖1,過點BBEBD,交MN于點E,進而得出:DC+AD=  BD.

(2)探究證明

將直線MN繞點A順時針旋轉(zhuǎn)到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關(guān)系,并證明

(3)拓展延伸

在直線MN繞點A旋轉(zhuǎn)的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣2,2),B(﹣3,﹣2)(每個小正方形的邊長均為1).

1)若點D與點A關(guān)于y軸對稱則點D的坐標為   

2)將點B向右平移5個單位,再向上平移2個單位得到點C,則點C的坐標為   

3)請在圖中表示出DC兩點,順次連接ABCD,并求出A、BC、D組成的四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中∠ACB90°,CDAB邊上的高,∠BAC的角平分線AFCDE,則△CEF必為(

A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.

(1)把圓片沿數(shù)軸向左滾動1周,點A到達數(shù)軸上點C的位置,點C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個數(shù)是______;

(2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是______;

(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,-1,-5,+4,+3,-2當圓片結(jié)束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO在平面直角坐標系中,O為原點,OBx軸上,∠AOB60°,點A坐標為(33),點C的坐標為(03),點D在第二象限,且ABO≌△DCO

1)請直接寫出點D的坐標_____;

2)點P在直線BC上,且PCD是等腰直角三角形,請畫出圖形并求點P的坐標.

查看答案和解析>>

同步練習冊答案