【題目】居民區(qū)內(nèi)的廣場(chǎng)舞引起媒體關(guān)注,民勤電視臺(tái)為此進(jìn)行過專訪報(bào)到.小平想了解本小區(qū)居民對(duì)廣場(chǎng)舞的看法,進(jìn)行了一次抽樣調(diào)查,把居民對(duì)廣場(chǎng)舞的看法分為四個(gè)層次:.非常贊同;.贊同但要有時(shí)間限制;.無所謂;.不贊同.并將調(diào)查結(jié)果繪制了圖①和圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

1)求本次被抽查的居民有多少人?

2)將圖①和圖②補(bǔ)充完整.

3)求圖②中層次所在扇形的圓心角度數(shù).

4)估計(jì)該小區(qū)5000名居民中對(duì)廣場(chǎng)舞的看法表示贊同(包括層次和層次)的大約有多少人.

【答案】1)本次共抽查300人;(2)補(bǔ)圖見解析;(3108°;(4)約有3500人.

【解析】

1)由A層次的人數(shù)除以所占的百分比求出調(diào)查的學(xué)生總數(shù)即可;

2)由D層次人數(shù)除以總?cè)藬?shù)求出D所占的百分比,再求出B所占的百分比,再乘以總?cè)藬?shù)可得B層次人數(shù),用總?cè)藬?shù)乘以C層次所占的百分比可得C層次的人數(shù),補(bǔ)全圖形即可;

3)用360°乘以A層次的人數(shù)所占的百分比即可得“A”層次所在扇形的圓心角的度數(shù);

4)求出樣本中A層次與B層次的百分比之和,乘以5000即可得到結(jié)果.

解:(1)由圖可知,層次的人有90人,占被抽查的居民的30%,

∴共抽查:(人),

答:本次共抽查300人;

2層次:300×20%=60(人);

層次:30÷300×100%=10%;

層次:300-90-60-30=120(人),

120÷300×100%=40%;

補(bǔ)圖如下:

3層次所在扇形的圓心角度數(shù)為:;

4(人),

答:估計(jì)該小區(qū)5000名居民中對(duì)廣場(chǎng)舞表示贊同的約有3500人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB8,射線BGABP為射線BG上一點(diǎn),以AP為邊作正方形APCD,且點(diǎn)C、D與點(diǎn)BAP兩側(cè),在線段DP上取一點(diǎn)E,使∠EAP=∠BAP,直線CE與線段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).

1)求證:AEP≌△CEP;

2)判斷CFAB的位置關(guān)系,并說明理由;

3)求AEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某段公路施工,甲工程隊(duì)單獨(dú)施工完成的天數(shù)是乙工程隊(duì)單獨(dú)施工完天數(shù)的2倍,由甲、乙兩工程隊(duì)合作20天可完成,.

(1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?

(2)若此項(xiàng)過程由甲工程隊(duì)單獨(dú)施工,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,已知甲工程隊(duì)每天需付施工費(fèi)1萬元,乙工程隊(duì)施工每天需付施工費(fèi)2.5萬元,要使施工費(fèi)用不超過64萬元,則甲工程隊(duì)至少要單獨(dú)施工多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的三個(gè) 頂點(diǎn)的位置如圖所示, 點(diǎn),現(xiàn) 平移。使點(diǎn)變換為點(diǎn),點(diǎn) 別是的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的圖像 (不寫畫法) ,并直接寫出點(diǎn) 的坐標(biāo):

2)若 內(nèi)部一點(diǎn) 的坐標(biāo)為,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①②,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的等邊恰好與坐標(biāo)系中的重合,現(xiàn)將繞邊的中點(diǎn)點(diǎn)也是的中點(diǎn)),按順時(shí)針方向旋轉(zhuǎn)的位置.

1)求點(diǎn)的坐標(biāo);

2)求經(jīng)過三點(diǎn)、、的拋物線的解析式;

3)如圖,是以為直徑的圓,過點(diǎn)作的切線與軸相交于點(diǎn),求切線的解析式;

4)拋物線上是否存在一點(diǎn),使得.若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=1,CD=,連接AC,將線段AC、AB分別繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°AE、AF,線段AE與弧BF交于點(diǎn)G,連接CG,則圖中陰影部分面積為__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到菱形AB′C′D′,則圖中陰影部分的面積為(

A.1+B.2+

C.3D.3–

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為

(1)求口袋中黃球的個(gè)數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州漆器名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案