【題目】在平面直角坐標系中,已知點A(a,0)、C(0,b)滿足,
(1) 直接寫出:a=_________,b=_________;
(2) 點B為x軸正半軸上一點,如圖1,BE⊥AC于點E,交y軸于點D,連接OE,若OE平分∠AEB,求直線BE的解析式;
(3) 在(2)的條件下,點M為直線BE上一動點,連OM,將線段OM繞點M逆時針旋轉90°,如圖2,點O的對應點為N,當點M運動時,判斷點N的運動路線是什么圖形,并說明理由.
【答案】(1) a=-1,b=-3;(2)直線BE的解析式為y=x-1;(3)點N的運動路線是一條直線,解析式為.
【解析】試題分析:(1)根據非負數是性質來求a、b的值;
(2)如圖1,過點O作OF⊥OE,交BE于F.構建全等三角形:△EOC≌△FOB(ASA),△AOC≌△DOB(ASA),易求D(0,-1),B(3,0).利用待定系數法求得直線BE的解析式y(tǒng)=x-1;
(3)如圖2,過點M作MG⊥x軸,垂足為G,過點N作NH⊥GH,垂足為H.構建全等三角形:△GOM≌△HMN,故OG=MH,GM=NH.設M(m, m-1),則H(m,-m-1),N(m-1,-m-1),由此求得點N的橫縱坐標間的函數關系.
試題解析:(1) a=-1,b=-3
(2) 如圖1,過點O作OF⊥OE,交BE于F
∵BE⊥AC,OE平分∠AEB
∴△EOF為等腰直角三角形
可證:△EOC≌△FOB(ASA),∴OB=OC
可證:△AOC≌△DOB(ASA),∴OA=OD
∵A(-1,0),B(0,-3)
∴D(0,-1),B(3,0)
∴直線BD,即直線BE的解析式為y=x-1
(3) 依題意,△NOM為等腰直角三角形
如圖2,過點M作MG⊥x軸,垂足為G,過點N作NH⊥GH,垂足為H
∵△NOM為等腰直角三角形
易證△GOM≌△HMN,
∴OG=MH,GM=NH
由(2)知直線BD的解析式y=x-1
設M(m, m-1),則H(m, m-1)
∴N(m-1,-m-1)
令(m-1=x,-m-1=y,
消去參數m得, -
即直線l的解析式為
科目:初中數學 來源: 題型:
【題目】為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調查,下表是這10戶居民2015年4月份用電量的調查結果:
居民(戶) | 1 | 2 | 3 | 4 |
月用電量(度/戶) | 30 | 42 | 50 | 51 |
那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是( )
A.中位數是50 B.眾數是51
C.方差是42 D.極差是21
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在端午佳節(jié)到來之前,兒童福利院對全體小朋友愛吃哪幾種粽子作調查,以決定最終買哪種粽子,下面的調查數據中最值得關注的是( )
A. 平均數B. 中位數C. 眾數D. 方差
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,∠BAC的平分線AD交⊙O于點D,過點D垂直于AC的直線交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)如果AD=5,AE=4,求AC長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com