【題目】如圖,△AOB,△COD是等腰直角三角形,點(diǎn)D在AB上.
(1)求證:△ACO≌△BDO;
(2)若∠BOD=30°,求∠ACD度數(shù).
【答案】(1)證明見解析;(2)∠ACD=60°.
【解析】
(1)根據(jù)等腰直角三角形得出OC=OD,OA=OB,∠AOB=∠COD=90°,求出∠AOC=∠BOD,根據(jù)全等三角形的判定定理推出即可;
(2)根據(jù)全等三角形的性質(zhì)求出∠BOD=∠ACO=30°,∠CAO=∠OBD=45°,然后利用三角形內(nèi)角和求出∠ACO,進(jìn)而求解.
解:(1)∵△AOB,△COD是等腰直角三角形,
∴OC=OD、AO=BO、∠COA+∠AOD=∠DOB+∠AOD=90°,
∴∠COA=∠DOB,
∴△ACO≌△BDO (SAS),
(2)解:∵△ACO≌△BDO,
∴∠BOD=∠ACO=30°,∠CAO=∠OBD=45°,
∴∠ACO=180°﹣30°﹣45°=105°,
∴∠ACD∠ACO﹣∠OCD=105°﹣45°=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、B、C,并求出△ABC的面積;
(2)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1;
(3)寫出點(diǎn)A1,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,實(shí)線部分是由正方形,正五邊形和正六邊形疊放在一起形成的,其中正方形和正六邊形的邊長(zhǎng)相同,求圖中∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)O為支點(diǎn)的杠桿,在A端用豎直向上的拉力將重為G的物體勻速拉起,當(dāng)杠桿OA水平時(shí),拉力為F;當(dāng)杠桿被拉至OA1時(shí),拉力為F1,過點(diǎn)B1作B1C⊥OA,過點(diǎn)A1作A1D⊥OA,垂足分別為點(diǎn)C、D.①△OB1C∽△OA1D; ②OAOC=OBOD;③OCG=ODF1;④F=F1.
其中正確的說法有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.
(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.
方法1:______;方法2:______.
(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系.______;
(3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)圖形驗(yàn)證:
(a+b)(a+2b)=a2+3ab+2b2
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(x-2016)2+(x-2018)2=34,求(x-2017)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是在寫字臺(tái)上放置一本攤開的數(shù)學(xué)書和一個(gè)折疊式臺(tái)燈時(shí)的截面示意圖,已知攤開的數(shù)學(xué)書AB長(zhǎng)20cm,臺(tái)燈上半節(jié)DE長(zhǎng)40cm,下半節(jié)DC長(zhǎng)50cm.當(dāng)臺(tái)燈燈泡E恰好在數(shù)學(xué)書AB的中點(diǎn)O的正上方時(shí),臺(tái)燈上、下半節(jié)的夾角即∠EDC=120°,下半節(jié)DC與寫字臺(tái)FG的夾角即∠DCG=75°,求BC的長(zhǎng).(書的厚度和臺(tái)燈底座的寬度、高度都忽略不計(jì),F、A、O、B、C、G在同一條直線上.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,公交車行駛在筆直的公路上,這條路上有A,B,C,D四個(gè)站點(diǎn),每相鄰兩站之間的距離為5千米,從A站開往D站的車稱為上行車,從D站開往A站的車稱為下行車,第一班上行車、下行車分別從A站、D站同時(shí)發(fā)車,相向而行,且以后上行車、下行車每隔10分鐘分別在A,D站同時(shí)發(fā)一班車,乘客只能到站點(diǎn)上、下車(上、下車的時(shí)間忽略不計(jì)),上行車、下行車的速度均為30千米/小時(shí).
(1)問第一班上行車到B站、第一班下行車到C站分別用時(shí)多少?
(2)若第一班上行車行駛時(shí)間為t小時(shí),第一班上行車與第一班下行車之間的距離為s千米,求s與t的函數(shù)關(guān)系式;
(3)一乘客前往A站辦事,他在B,C兩站間的P處(不含B,C站),剛好遇到上行車,BP=x千米,此時(shí),接到通知,必須在35分鐘內(nèi)趕到,他可選擇走到B站或走到C站乘下行車前往A站.若乘客的步行速度是5千米/小時(shí),求x滿足的條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com