【題目】如圖,已知A(-4,2)、B(n,-4)是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.

(1)求此反比例函數(shù)和一次函數(shù)的解析式;

(2)求AOB的面積;

(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

【答案】(1)、y=-;y=-x-2;(2)、6;(3)、x<-4或0<x<2

【解析】

試題分析:(1)、根據(jù)點B的坐標得出反比例函數(shù)解析式;根據(jù)點A和點B的坐標利用待定系數(shù)法求出一次函數(shù)的解析式;(2)、利用AOC的面積加上BOC的面積得出答案;(3)、根據(jù)圖像得出答案.

試題解析:(1)、B(2,-4)在反比例函數(shù)y=的圖像上 所以-4=得m=-8

所以反比例函數(shù)的解析式為:y=- 當(dāng)x=-4時, y=2,所以A(-4,2)

因A、B兩點都在一次函數(shù)y=kx+b的圖象上 所以:,解得: k=-1,b=-2

所以這個一次函數(shù)的解析式為: y=-x-2;

(2)、直線AB與x軸的交點C(-2,0);

(3)、x<-4或0<x<2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】24如圖,P是弧AB所對弦AB上一動點,過點PPCAB交弧AB于點C,取AP中點D,連接CD.已知AB=6cm,設(shè)A,P兩點間的距離為xcm,CD兩點間的距離為ycm.(當(dāng)點P與點A重合時,y的值為0;當(dāng)點P與點B重合時,y的值為3)

小凡根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小凡的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

   

3.2

3.4

3.3

3

(2)建立平面直角坐標系,描出補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

(3)結(jié)合所畫出的函數(shù)圖象,解決問題:當(dāng)∠C=30°時,AP的長度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,點P、Q分別在直線CB與射線DC上(點P不與點C、點B重合),且保持∠APQ=90°,CQ=1,則線段BP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明周末要乘坐公交車到植物園游玩,從地圖上查找路線發(fā)現(xiàn),幾條線路都需要換乘一次.在出發(fā)站點可選擇空調(diào)車A、空調(diào)車B、普通車a,換乘站點可選擇空調(diào)車C,普通車b、普通車c,且均在同一站點換乘.空調(diào)車投幣2元,普通車投幣1元.

(1)求小明在出發(fā)站點乘坐空調(diào)車的概率;

(2)求小明到達植物園恰好花費3元公交費的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進價之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進價分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:x2+8x﹣9=0(用配方法)

(2)解方程:3(x﹣2)x=4x﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且EDB=C.

(1)求證:ADEDBE;

(2)若DE=9cm,AE=12cm,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若⊙O的半徑為2,B=50°,AC=4.8,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案