【題目】如圖1,已知拋物線yax2+2x+ca0),與y軸交于點(diǎn)A0,6),與x軸交于點(diǎn)B6,0).

1)求這條拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);

2)設(shè)點(diǎn)P是拋物線上的動(dòng)點(diǎn),若在此拋物線上有且只有三個(gè)P點(diǎn)使得△PAB的面積是定值S,求這三個(gè)點(diǎn)的坐標(biāo)及定值S

3)若點(diǎn)F是拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)P是(2)中位于直線AB上方的點(diǎn),在拋物線上是否存在一點(diǎn)Q,使得P、Q、B、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存請(qǐng)說明理由.

【答案】1y=﹣x2+2x+6,頂點(diǎn)坐標(biāo)為(2,8);(2)點(diǎn)P'3+3,﹣3),P'33,﹣+3),S;(3)存在,點(diǎn)Q7,﹣)或(﹣1)或(5,).

【解析】

(1)將交點(diǎn)坐標(biāo)代入解析式可求解;

(2)設(shè)AB上方的拋物線上有點(diǎn)P,過點(diǎn)PAB的平行線交對(duì)稱軸于點(diǎn)C,且與拋物線只有一個(gè)交點(diǎn)為P,設(shè)區(qū)PC解析式與拋物線解析式組成方程組,由△=0,可求PC解析式,可求點(diǎn)P坐標(biāo),由等底等高的三角形面積相等,可得另兩個(gè)點(diǎn)所在直線與AB,PC都平行,且與AB的距離等于PCAB的距離,可求P'E的解析式,即可求解;

(3)分兩種情況討論,由平行四邊形的性質(zhì)可求解.

解:(1)∵拋物線yax2+2x+ca0),與y軸交于點(diǎn)A0,6),與x軸交于點(diǎn)B6,0).

∴拋物線解析式為:y=﹣x2+2x+6,

y=﹣x2+2x+6=﹣x22+8,

∴頂點(diǎn)坐標(biāo)為(28

(2)∵點(diǎn)A0,6),點(diǎn)B6,0),

∴直線AB解析式y=﹣x+6,

當(dāng)x2時(shí),y4,

∴點(diǎn)D2,4

如圖1,設(shè)AB上方的拋物線上有點(diǎn)P,過點(diǎn)PAB的平行線交對(duì)稱軸于點(diǎn)C,且與拋物線只有一個(gè)交點(diǎn)為P,

設(shè)直線PC解析式為y=﹣x+b,

∴﹣x2+2x+6=﹣x+b,且只有一個(gè)交點(diǎn),

∴△=94××(b6)=0

b,

∴直線PC解析式為y=﹣x+,

∴當(dāng)x2,y,

∴點(diǎn)C坐標(biāo)(2,),

CD,

∵﹣x2+2x+6=﹣x+,

x3,

∴點(diǎn)P3,

∵在此拋物線上有且只有三個(gè)P點(diǎn)使得△PAB的面積是定值S,

∴另兩個(gè)點(diǎn)所在直線與AB,PC都平行,且與AB的距離等于PCAB的距離,

DECD

∴點(diǎn)E2,﹣),

設(shè)P'E的解析式為y=﹣x+m,

∴﹣=﹣2+m,

m

P'E的解析式為y=﹣x+

∴﹣x2+2x+6=﹣x+,

x3±3,

∴點(diǎn)P'3+3,﹣3),P'33,﹣+3),

S×6×(3)=

(3)設(shè)點(diǎn)Qx,y

PB是對(duì)角線,

P、QB、F為頂點(diǎn)的四邊形是平行四邊形

BPFQ互相平分,

x7

∴點(diǎn)Q7,﹣);

PB為邊,

PQ、BF為頂點(diǎn)的四邊形是平行四邊形,

BFPQ,BFPQ,或BQFP,BQPF

xBxFxPxQ,或xBxQxPxF

xQ3﹣(62)=﹣1,或xQ6﹣(32)=5,

∴點(diǎn)Q(﹣1,)或(5,);

綜上所述,點(diǎn)Q7,﹣)或(﹣1)或(5,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(組)、不等式(組):

1

2

3

4

5)解不等式組: 并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,點(diǎn)是弧上的任一點(diǎn),過點(diǎn)的切線交于點(diǎn).連接

1)求證:

2)填空:①當(dāng)_____時(shí),四邊形是正方形;

②當(dāng)_____時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,n)B(3,4)是一次函數(shù)y1kxb的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn),過點(diǎn)D(t0)0t<3)作x軸的垂線,分別交雙曲線和直線y1kxbP、Q兩點(diǎn)

(1) 直接寫出反比例函數(shù)和一次函數(shù)的解析式

(2) 當(dāng)t為何值時(shí),SBPQSAPQ

(3) 以PQ為邊在直線PQ的右側(cè)作正方形PQMN,試說明:邊QM與雙曲線x>0)始終有交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月,我市某中學(xué)舉行了“愛我中國朗誦比賽”活動(dòng),根據(jù)學(xué)生的成績劃分為A、B、C、D四個(gè)等級(jí),并繪制了不完整的兩種統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,回答下列問題:

(1)參加朗誦比賽的學(xué)生共有   人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中,m=   n=   ;C等級(jí)對(duì)應(yīng)扇形有圓心角為   度;

(3)學(xué)校欲從獲A等級(jí)的學(xué)生中隨機(jī)選取2人,參加市舉辦的朗誦比賽,請(qǐng)利用列表法或樹形圖法,求獲A等級(jí)的小明參加市朗誦比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年“519(我要走)全國徒步日(江夏站)”暨第六屆“環(huán)江夏”徒步大會(huì)519日在美麗的花山腳下降重舉行.組委會(huì)(活動(dòng)主辦方)為了獎(jiǎng)勵(lì)活動(dòng)中取得了好成績的參賽選手,計(jì)劃購買共100件的甲、乙兩種紀(jì)念品發(fā)放.其中甲種紀(jì)念品每件售價(jià)120元,乙種紀(jì)念品每件售價(jià)80.

1)如果購買甲、乙兩種紀(jì)念品一共花費(fèi)了9600元,求購買甲、乙兩種紀(jì)念品各是多少件?

2)設(shè)購買甲種紀(jì)念品件,如果購買乙種紀(jì)念品的件數(shù)不超過甲種紀(jì)念品的數(shù)量的2倍,并且總費(fèi)用不超過9400.問組委會(huì)購買甲、乙兩種紀(jì)念品共有幾種方案?哪一種方案所需總費(fèi)用最少?最少總費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無刻度的直尺按要求畫圖.

1)在圖1中,畫出ABC的三條高的交點(diǎn);

2)在圖2中,畫出ABCAB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=-x2+mx+m+1(其中m為常數(shù))

(1)該函數(shù)的圖象與X軸公共點(diǎn)的個(gè)數(shù)是______個(gè)

(2)若該函數(shù)的圖象的對(duì)稱軸是直線X=1,頂點(diǎn)為點(diǎn)A,求此時(shí)函數(shù)的解析式及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解九年級(jí)學(xué)生體育測試成績情況,以九年級(jí)(1)班學(xué)生的體育測試成績?yōu)闃颖,按B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分~74分;D級(jí):60分以下)

(1)求出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;

(2)求出扇形統(tǒng)計(jì)圖(圖2)中C級(jí)所在的扇形圓心角的度數(shù);

(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案