【題目】在下面的解題過程的橫線上填空,并在括號內注明理由。
如圖,已知∠A=∠F,∠C=∠D,試說明BD∥CE.
解:∵∠A=∠F(已知)
∴DF∥AC(_____________________)
∴∠D=_____(______________________)
∵∠C=∠D(已知)
∴∠1=_____(___________________)
∴BD∥CE(_______________________)
科目:初中數學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=2,
將菱形OABC繞原點順時針旋轉105°至OA′B′C′的位置,則點B′的坐標為( )
A. (, ) B. (, ) C. (-, ) D. (, )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)直角三角形有一個非常重要的性質質:直角三角形斜邊上的中線等于斜邊的一半,比如:如圖1,Rt△ABC中,∠C=90°,D為斜邊AB中點,則CD=AD=BD=-AB.請你利用該定理和以前學過的知識解決下列問題:
在△ABC中,直線繞頂點A旋轉.
(1)如圖2,若點P為BC邊的中點,點B、P在直線的異側,BM⊥直線于點M,CN⊥直線于點N,連接PM、PN.求證:PM=PN;
(2)如圖3,若點B、P在直線的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;
(3)如圖4,∠BAC=90°,直線旋轉到與BC垂直的位置,E為AB上一點且AE=AC,EN⊥于N,連接EC,取EC中點P,連接PM、PN,求證:PM⊥PN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數分別為( 。
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
中華優(yōu)秀傳統文化是中華民族的“根”和“魂”,是我們必須世代傳承的文化根脈、文化基因.為傳承優(yōu)秀傳統文化,某校為各班購進《三國演義》和《水滸傳》連環(huán)畫若干套,其中每套《三國演義》連環(huán)畫的價格比每套《水滸傳》連環(huán)畫的價格貴60元,用4800元購買《水滸傳》連環(huán)畫的套數是用3600元購買《三國演義》連環(huán)畫套數的2倍,求每套《水滸傳》連環(huán)畫的價格.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某車間的甲、乙兩名工人分別同時生產同種零件,他們一天生產零件y(個)與生產時間t(小時)的函數關系如圖所示.
(1)根據圖象填空:甲、乙中,______先完成一天的生產任務;在生產過程中,______因機器故障停止生產______小時.
(2)誰在哪一段時間內的生產速度最快?求該段時間內,他每小時生產零件的個數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點P從A出發(fā),沿A→B→C→D的路線運動,到D停止;點Q從D點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.
(1)求出a值;
(2)設點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關系式;
(3)求P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=24cm,BC=7cm,P點在BC上,從B點到C點運動(不包括C點),點P運動的速度為2cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為5cm/s.若點P、Q分別從B、C同時運動,且運動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當t為何值時,P、Q兩點的距離為5cm?
(2)當t為何值時,△PCQ的面積為15cm2?
(3)請用配方法說明,點P運動多少時間時,四邊形BPQA的面積最?最小面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com