【題目】如圖正方形ABCD的邊長為6,E、F分別在AB,ADCE=3且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

【答案】B

【解析】

試題如圖,延長FDG,使DG=BE,連接CG、EF四邊形ABCD為正方形,在△BCE△DCG中,∵CB=CD∠CBE=∠CDG,BE=DG∴△BCE≌△DCGSAS),∴CG=CE,∠DCG=∠BCE∴∠GCF=45°,在△GCF△ECF中,∵GC=EC∠GCF=∠ECF,CF=CF∴△GCF≌△ECFSAS),∴GF=EF∵CE=,CB=6∴BE===3,∴AE=3,設AF=x,則DF=6﹣xGF=3+6﹣x=9﹣x,∴EF==,∴x=4,即AF=4∴GF=5,∴DF=2∴CF===,故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC ,CEAB E,DFAB F,ACED,CE 是∠ACB 的平分線, 則圖中與∠FDB 相等的角(不包含∠FDB)的個數(shù)為(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為支持四川抗震救災,重慶市A、B、C三地現(xiàn)在分別有賑災物資100噸、100噸、80噸,需要全部運往四川重災地區(qū)的D、E兩縣.根據(jù)災區(qū)的情況,這批賑災物資運往D縣的數(shù)量比運往E縣的數(shù)量的2倍少20噸.
(1)求這批賑災物資運往D、E兩縣的數(shù)量各是多少?
(2)若要求C地運往D縣的賑災物資為60噸,A地運往D的賑災物資為x噸(x為整數(shù)),B地運往D縣的賑災物資數(shù)量小于A地運往D縣的賑災物資數(shù)量的2倍.其余的賑災物資全部運往E縣,且B地運往E縣的賑災物資數(shù)量不超過25噸.則A、B兩地的賑災物資運往D、E兩縣的方案有幾種?請你寫出具體的運送方案;
(3)已知A、B、C三地的賑災物資運往D、E兩縣的費用如下表:

A地

B地

C地

運往D縣的費用(元/噸)

220

200

200

運往E縣的費用(元/噸)

250

220

210

為及時將這批賑災物資運往D、E兩縣,某公司主動承擔運送這批賑災物資的總費用,在(2)問的要求下,該公司承擔運送這批賑災物資的總費用最多是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是以原點為圓心, 為半徑的圓,點P是直線y=﹣x+6上的一點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為( )

A.3
B.4
C.6﹣
D.3 ﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個梯子AB斜靠在一豎直的墻AO上,測得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時梯子的底端也恰好外移0.5米,則梯子的長度AB為(

A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列兩個等式:3+2=3×2﹣1,4+=4×﹣1,給出定義如下:

我們稱使等式a+b=ab﹣1成立的一對有理數(shù)a,b椒江有理數(shù)對,記為(a,b),如:數(shù)對(3,2),(4,)都是椒江有理數(shù)對”.

(1)數(shù)對(﹣2,1),(5,)中是椒江有理數(shù)對的是   ;

(2)若(a,3)是椒江有理數(shù)對,求a的值;

(3)若(m,n)是椒江有理數(shù)對,則(﹣n,﹣m)   椒江有理數(shù)對(填”、“不是不確定”).

(4)請再寫出一對符合條件的椒江有理數(shù)對   

(注意:不能與題目中已有的椒江有理數(shù)對重復)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)120分時,時鐘的時針與分針的夾角是幾度?

(2)在時鐘上,7點到8點之間,時針和分針何時成30°的角?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以直線AB上一點O為端點作射線 OC,使BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB,COE= °;

(2)如圖2,將直角三角板DOE繞點O逆時針方向轉動到某個位置,OE恰好平分AOC,請說明OD所在射線是BOC的平分線

(3)如圖3,將三角板DOE繞點O逆時針轉動到某個位置時,若恰好COD= AOEBOD的度數(shù)?

查看答案和解析>>

同步練習冊答案