【題目】如圖,等邊△ABC的邊長為6,點(diǎn)D為AB上一點(diǎn),DE⊥BC于點(diǎn)E,EF⊥AC于點(diǎn)F,連接DF.若△DEF也是等邊三角形,求AD的長.
【答案】2.
【解析】試題分析:先由△ABC是等邊三角形和△DEF是等邊三角形,用AAS證明△DEB≌△EFC,得到DB=EC,在Rt△DEB中,利用30度角所對(duì)直角邊等于斜邊的一半,即可得到BE的長,進(jìn)而得到BD的長,即可得到結(jié)論.
試題解析:解:∵△ABC為等邊三角形,∴∠B=∠C=60°.
∵△DEF為等邊三角形,∴DE=EF.
∵DE⊥BC,EF⊥AC,∴∠DEB=∠EFC=90°.
在△DEB和△EFC中,∵,∴△DEB≌△EFC(AAS),∴DB=EC.
在Rt△DEB中,∠DEB=90°,∠BDE=90°-60°=30°,∴BE=BD=EC.
∴,∴.∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,對(duì)角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),以下說法錯(cuò)誤的是( 。
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面內(nèi)的三個(gè)點(diǎn)A(1,3),B(3,1),O(0,0),求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形中,對(duì)角線交于點(diǎn), 是延長線上的點(diǎn),且是等邊三角形.
(1)求證:四邊形是菱形;
(2)若,求證:四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=10,點(diǎn)C,D在線段AB上,且AC=DB=2;點(diǎn)P是線段CD上的動(dòng)點(diǎn),分別以AP,PB為邊在線段AB的同側(cè)作等邊三角形AEP和等邊三角形PFB,連接EF,設(shè)EF的中點(diǎn)為G;當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)G移動(dòng)路徑的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊梅是漳州的特色時(shí)令水果,楊梅一上市,水果店的老板用1200元購進(jìn)一批楊梅,很快售完;老板又用2500元購進(jìn)第二批楊梅,所購件數(shù)是第一批的2倍,但進(jìn)價(jià)比第一批每件多了5元.
(1)第一批楊梅每件進(jìn)價(jià)多少元?
(2)老板以每件150元的價(jià)格銷售第二批楊梅,售出80%后,為了盡快售完,決定打折促銷,要使第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價(jià)至少打幾折?(利潤=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明拋硬幣的過程(每枚硬幣只有正面朝上和反面朝上兩種情況)見下表,閱讀并回答問題:
拋擲結(jié)果 | 10次 | 50次 | 500次 | 5000次 |
出現(xiàn)正面次數(shù) | 3 | 24 | 258 | 2498 |
出現(xiàn)正面的頻率 | 30% | 48% | 51.6% | 49.96% |
(1)從表中可知,當(dāng)拋完10次時(shí)正面出現(xiàn)3次,正面出現(xiàn)的頻率為30%,那么,小明拋完10次時(shí),得到 次反面,反面出現(xiàn)的頻率是 ;
(2)當(dāng)他拋完5000次時(shí),反面出現(xiàn)的次數(shù)是 ,反面出現(xiàn)的頻率是 ;
(3)通過上表我們可以知道,正面出現(xiàn)的頻數(shù)和反面出現(xiàn)的頻數(shù)之和等于
,正面出現(xiàn)的頻率和反面出現(xiàn)的頻率之和等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E.若AC=3,AB=5,則DE等于( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦AC上一動(dòng)點(diǎn)(不與A,C重合),過點(diǎn)P作PE⊥AB,垂足為E,射線EP交 于點(diǎn)F,交過點(diǎn)C的切線于點(diǎn)D.
(1)求證:DC=DP;
(2)若直徑AB=12cm,∠CAB=30°, ①當(dāng)E是半徑OA中點(diǎn)時(shí),切線長DC=cm:
②當(dāng)AE=cm時(shí),以A,O,C,F(xiàn)為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com