【題目】如圖,在ABCD中,點E為CD的中點,點F在BC上,且CF=2BF,連接AE,AF,若AF=,AE=7,tan∠EAF=,則線段BF的長為__________.
【答案】
【解析】過F作FG⊥AE于G,延長AE、BC交于H,
在Rt△AFG中,∵tan∠EAF=,∴設(shè)FG=5x,AG=2x,
由勾股定理得:()2=(2x)2+(5x)2,
∴x1=1,x2=﹣1(舍),∴AG=2,F(xiàn)G=5,
∵AE=7,∴EG=5,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,∴∠D=∠DCH,∠DAE=∠H,
∵DE=EC,
∴△ADE≌△HCE,∴EH=AE=7,
Rt△FGH中,∵FG=5,GH=5+7=12,∴FH=13,
∵CF=2BF,設(shè)BF=a,則CF=2a,AD=CH=3a,
∴2a+3a=13,a=,∴BF=,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示.
(1)本次共抽查學(xué)生多少人?并將條形統(tǒng)計圖補充完整;
(2)請直接寫出捐款金額的眾數(shù)和中位數(shù),并計算捐款的平均數(shù);
(3)在八年級600名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位運動員推鉛球,鉛球運行時離地面的高度(米)是關(guān)于運行時間(秒)的二次函數(shù).已知鉛球剛出手時離地面的高度為米;鉛球出手后,經(jīng)過4秒到達離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標系.
(Ⅰ)為了求這個二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個點的坐標.根據(jù)題意可知,該二次函數(shù)圖象上三個點的坐標分別是____________________________;
(Ⅱ)求這個二次函數(shù)的解析式和自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象與反比例函數(shù)y=-的圖象交于A(-2,b),B兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線AB向下平移m(m>0)個單位長度后,與反比例函數(shù)的圖象有且只有一個公共點,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列5個結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE;⑤CF=BD.正確的有( )個.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E在菱形ABCD的對角線BD上,連接AE,且AE=BE,⊙O是△ABE的外接圓,連接OB.
(1)求證:OB⊥BC;
(2)若BD=,tan∠OBD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
(1)“綠水青山就是金山銀山”,某省2018年新建濕地公園和森林公園共42個,其中森林公園比濕地公園多4個.問該省2018年新建濕地公園和森林公園各多少個?
(2)某市大市場進行高端的家用電器銷售,每件電器的進價是2000元,若按標價的八折銷售該電器一件,則利潤率為20%.求:
①該電器的標價是多少元?
②現(xiàn)如果按同一標價的九折銷售該電器一件,那么獲得的利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC中,∠ABC=105°,過點B作BD⊥AC,垂足為D,E是線段BC上一點,且∠BED=75°,F是射線BA上一點,過點F作FG⊥AC,垂足為G.若∠BDE=55°,則∠BFG=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項式的值與字母x的取值無關(guān),求a、b的值.
(2)在(1)的條件下,先化簡多項式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com