【題目】如圖,在矩形ABCD中,AB=2,BC=4.將矩形ABCD繞點(diǎn)C沿順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到矩形FGCE(點(diǎn)AB、D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)F、GE).動(dòng)點(diǎn)P從點(diǎn)B開(kāi)始沿BCCE運(yùn)動(dòng)到點(diǎn)E后停止,動(dòng)點(diǎn)Q從點(diǎn)E開(kāi)始沿EFFG運(yùn)動(dòng)到點(diǎn)G后停止,這兩點(diǎn)的運(yùn)動(dòng)速度均為每秒1個(gè)單位.若點(diǎn)P和點(diǎn)Q同時(shí)開(kāi)始運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x(),△APQ的面積為y,則能夠正確反映yx之間的函數(shù)關(guān)系的圖象大致是( )

A. B. C. D.

【答案】A

【解析】

先求出點(diǎn)PBE上運(yùn)動(dòng)是時(shí)間為6秒,點(diǎn)QEF-FG上運(yùn)動(dòng)是時(shí)間為6秒,然后分:
①當(dāng)0≤x≤4時(shí),根據(jù)APQ的面積為y=S矩形MBEF-SABP-SPEQ-S梯形FMAQ,列式整理即可得解;
②當(dāng)4<x≤6時(shí),根據(jù)APQ的面積為APQ的面積為y=S梯形MBPQ-SBPA-SAMQ,列式整理即可得解,再根據(jù)函數(shù)解析式確定出函數(shù)圖象即可.

①如圖1,延長(zhǎng)ADEFH,延長(zhǎng)FGBA的延長(zhǎng)線交于點(diǎn)M.

當(dāng)0≤x≤4時(shí),

此時(shí)的函數(shù)圖象是開(kāi)口向上的拋物線的一部分,且頂點(diǎn)坐標(biāo)是

C.D選項(xiàng)錯(cuò)誤;

②點(diǎn)QGF上時(shí),4<x≤6,

BP=xMQ=6+4x=10x,

APQ的面積為y=S梯形MBPQSBPASAMQ,

綜上所述,

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次課題學(xué)習(xí)中活動(dòng)中,老師提出了如下一個(gè)問(wèn)題:

點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),過(guò)點(diǎn)P畫(huà)直線l分別交正方形的兩邊于點(diǎn)M、N,使點(diǎn)P是線段MN的三等分點(diǎn),這樣的直線能夠畫(huà)幾條?

經(jīng)過(guò)思考,甲同學(xué)給出如下畫(huà)法:

如圖1,過(guò)點(diǎn)P畫(huà)PEABE,EB上取點(diǎn)M,使EM=2EA,畫(huà)直線MPADN,則直線MN就是符合條件的直線l.

根據(jù)以上信息,解決下列問(wèn)題:

(1)甲同學(xué)的畫(huà)法是否正確?請(qǐng)說(shuō)明理由.

(2)在圖1,能否畫(huà)出符合題目條件的直線?如果能,請(qǐng)直接在圖1中畫(huà)出.

(3)如圖2,A1、C1分別是正方形ABCD的邊AB、CD上的三等分點(diǎn),A1C1AD.當(dāng)點(diǎn)P在線段A1C1上時(shí),能否畫(huà)出符合題目條件的直線?如果能,可以畫(huà)出幾條?

(4)如圖3,正方形ABCD邊界上的A1、A2、B1B2、C1、C2D1、D2都是所在邊的三等分點(diǎn).當(dāng)點(diǎn)P在正方形ABCD內(nèi)的不同位置時(shí),試討論,符合題目條件的直線l的條數(shù)的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫(xiě)出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫(xiě)出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.

1)當(dāng)為何值時(shí),;

2)是否存在某一時(shí)刻,使?若存在,求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說(shuō)理由;

3)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為

(1)求口袋中黃球的個(gè)數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù) 從選擇籃球和排球的學(xué)生中各隨機(jī)抽取16人,進(jìn)行了體育測(cè)試,測(cè)試成績(jī)(十分制)如下:

排球 10 9.5 9.5 10 8 9 9.5 9

7 10 4 5.5 10 9.5 9.5 10

籃球 9.5 9 8.5 8.5 10 9.5 10 8

6 9.5 10 9.5 9 8.5 9.5 6

整理、描述數(shù)據(jù) 按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

4.0x5.5

5.5x7.0

7.0x8.5

8.5x10

10

排球

1

1

2

7

5

籃球

(說(shuō)明:成績(jī)8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格.)

分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

項(xiàng)目

平均數(shù)

中位數(shù)

眾數(shù)

排球

8.75

9.5

10

籃球

8.81

9.25

9.5

得出結(jié)論

(1)如果全校有160人選擇籃球項(xiàng)目,達(dá)到優(yōu)秀的人數(shù)約為_____人;

(2)初二年級(jí)的小明和小軍看到上面數(shù)據(jù)后,小明說(shuō):排球項(xiàng)目整體水平較高.小軍說(shuō):籃球項(xiàng)目整體水平較高.

你同意______ 的看法,理由為__________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=7cm,ABC=30°,點(diǎn)PA點(diǎn)出發(fā),以1cm/s的速度向B點(diǎn)移動(dòng),點(diǎn)QB點(diǎn)出發(fā),以2cm/s的速度向C點(diǎn)移動(dòng).如果P、Q兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)幾秒后△PBQ的面積等于4cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩臺(tái)智能機(jī)器人從同一地點(diǎn)出發(fā),沿著筆直的路線行走了450cm.甲比乙先出發(fā),乙出發(fā)一段時(shí)間后速度提高為原來(lái)的2倍.兩機(jī)器人行走的路程y(cm)與時(shí)間x(s)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問(wèn)題:

(1)乙比甲晚出發(fā)_________秒,乙提速前的速度是每秒_________cm, =_________;

(2)已知甲勻速走完了全程,請(qǐng)補(bǔ)全甲的圖象;

(3)當(dāng)x為何值時(shí),乙追上了甲?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知MON=30°,OA=4,在OM、ON上分別找一點(diǎn)B、C,使AB+BC最小,則最小值為___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案