【題目】如圖所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,點(diǎn)E是BC的中點(diǎn),EF⊥AB,垂足為F,且AB=DE.
(1)求證:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的長(zhǎng).
【答案】(1)略 (2)4cm
【解析】
(1)要證△BCD是等腰直角三角形,只需證BC=DB,由已知BD⊥BC,EF⊥AB,可證∠2=∠3,由已知AC⊥BC,DB⊥BC,可證AC∥BD,得∠A=∠2,即可證得∠A=∠3,又已知∠ACB=∠EBD=90°,AB=DE,符合三角形全等的判定定理AAS,即可證得△ACB≌△EBD,所以BC=DB,即證△BCD是等腰直角三角形;
(2)由(1)知△ACB≌△EBD,得到AC=EB,又因?yàn)?/span>BD=8cm,即BC=8cm.又因?yàn)?/span>E是BC中點(diǎn),故BE=4,即可求AC=4cm.
(1)如圖所示,
∵BD⊥BC,EF⊥AB,
∴∠1+∠2=90°,∠1+∠3=90°,
∴∠2=∠3,
∵AC⊥BC,DB⊥BC,
∴AC∥BD,
∴∠A=∠2,
∴∠A=∠3,
∴又∠ACB=∠EBD=90°,AB=DE,
∴△ACB≌△EBD,
∴BC=DB,
∴△BCD是等腰直角三角形;
(2)由△ACB≌△EBD,
∴AC=EB,
∵BD=8cm,
∴BC=8cm.
∵E是BC中點(diǎn),
∴BE=4cm,
∴AC=4(cm).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知 內(nèi)接于 , 是直徑,點(diǎn) 在 上, ,過(guò)點(diǎn) 作 ,垂足為 ,連接 交 邊于點(diǎn) .
(1)求證: ∽ ;
(2)求證: ;
(3)連接 ,設(shè) 的面積為 ,四邊形 的面積為 ,若 ,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,點(diǎn)E分別是AB,AC的中點(diǎn),點(diǎn)F是DE上一點(diǎn),∠AFC=90°,BC=10cm,AC=6cm,則DF=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知:如圖1,P為△ADC內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,則∠P=____________°;(答案直接填在題中橫線上)
(2)如圖2,P為四邊形ABCD內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠BCD,試探究∠P與∠A+∠B的數(shù)量關(guān)系,并寫(xiě)出你的探索過(guò)程;
(3)如圖3,P為五邊形ABCDE內(nèi)一點(diǎn),DP、CP分別平分∠EDC和∠BCD,請(qǐng)直接寫(xiě)出∠P與∠A+∠B+∠E的數(shù)量關(guān)系:________________;
(4)若P為n邊形A1A2A3…An內(nèi)一點(diǎn),PA1平分∠AnA1A2,PA2平分∠A1A2A3,請(qǐng)直接寫(xiě)出∠P與∠A3+A4+A5+…∠An的數(shù)量關(guān)系:__________________________.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線相交于點(diǎn).
(1)若,求的度數(shù);
(2)若,求的度數(shù);
(3)在(2)的條件下,過(guò)點(diǎn)作,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項(xiàng)得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1.
其中正確的個(gè)數(shù)有( )
A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)行駛時(shí)油箱中余油量Q(升)與行駛時(shí)間t(小時(shí))的關(guān)系如下表:
行駛時(shí)間t | 1 | 2 | 3 | 4 | … |
余油量Q | 40﹣6 | 40﹣12 | 40﹣18 | 40﹣24 | … |
(1)寫(xiě)出用行駛時(shí)間t表示余油量Q的代數(shù)式 ;
(2)當(dāng)t=時(shí),余油量Q的值為 升;
(3)汽車(chē)每小時(shí)行駛60公里,問(wèn)油箱中原有汽油可供汽車(chē)行駛多少公里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,D是半圓上的一點(diǎn),∠DOB=75°,DC交BA的延長(zhǎng)線于E,交半圓于C,且CE=AO,求∠E的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com