【題目】如圖1,在中,,,,于點(diǎn)D,將繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到

如圖2,當(dāng)時(shí),求點(diǎn)C、E之間的距離;

在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)A、E、F三點(diǎn)共線時(shí),求AF的長(zhǎng);

連結(jié)AF,記AF的中點(diǎn)為P,請(qǐng)直接寫(xiě)出線段CP長(zhǎng)度的最小值.

【答案】1CE;(2AF的長(zhǎng)為+;(3CP的最小值=OCOP2

【解析】

1)只要證明∠CBE90°,求出BE,BC利用勾股定理即可解決問(wèn)題.

2)分兩種情形畫(huà)出圖形分別求解即可.

3)如圖3中,取AB的中點(diǎn)O,連接OP,CO.利用三角形的中位線定理可得OP ,推出點(diǎn)P的運(yùn)動(dòng)軌跡是以O為圓心 為半徑的圓,由此即可解決問(wèn)題.

解:(1)如圖1中,

RtABC中,∵∠ACB90°,∠ABC30°,AC2

AB2AC4,BC 2,

CDAB,

ABCD ACBC

CD ,

BDBE 3

∵∠ABEα60°,

∴∠CBE30°+60°90°

CE

2span>)如圖21中,

AF,E三點(diǎn)共線,

∴∠AEB90°,AE ,

AFAEEF

如圖22中,

當(dāng)A,EF共線時(shí),∠AEB90°AE ,

AFAE+EF+

綜上所述,AF的長(zhǎng)為+

3)如圖3中,取AB的中點(diǎn)O,連接OP,CO

AOOB,APPF,

OP BFBC,

∴點(diǎn)P的運(yùn)動(dòng)軌跡是以O為圓心為半徑的圓,

OC AB2,

CP的最小值=OCOP2

故答案為:(1CE ;(2AF的長(zhǎng)為+;(3CP的最小值=OCOP2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;(a+c)2<b2;③當(dāng)﹣1<x<3時(shí),y<0;④當(dāng)a=1時(shí),將拋物線先向上平移2個(gè)單位,再向右平移1個(gè)單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C上測(cè)得兩建筑物A、B底部的俯角分別為30°60度.如果這時(shí)氣球的高度CD90米.且點(diǎn)A、D、B在同一直線上,求建筑物AB間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,小紅家陽(yáng)臺(tái)上放置了一個(gè)曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB,CD相交于點(diǎn)O,B,D兩點(diǎn)立于地面,經(jīng)測(cè)量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開(kāi),扣鏈EF成一條直線,且EF=32cm.(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.534)

(1)求證:ACBD;

(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);

(3)小紅的連衣裙穿在衣架后的總長(zhǎng)度達(dá)到122cm,垂掛在曬衣架上是否會(huì)拖落到地面?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量瀑布AB的高度,測(cè)量人員在瀑布對(duì)面山上的D點(diǎn)處測(cè)得瀑布頂端A點(diǎn)的仰角是,測(cè)得瀑布底端B點(diǎn)的俯角是,AB與水平面垂直又在瀑布下的水平面測(cè)得,注:C、G、F三點(diǎn)在同一直線上,于點(diǎn),斜坡,坡角(參考數(shù)據(jù):,,,,,)

求測(cè)量點(diǎn)D距瀑布AB的距離精確到

求瀑布AB的高度精確到

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1,與x軸的另一個(gè)交點(diǎn)為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿AB方向以每秒5個(gè)單位長(zhǎng)度的速度向B點(diǎn)勻速運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)同時(shí)出發(fā),以相同的速度沿CA方向向A點(diǎn)勻速運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正PQM(P、Q、M按逆時(shí)針排序),以QC為邊在AC上方作正QCN,設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

(1)求cosA的值;

(2)當(dāng)PQMQCN的面積滿足SPQM=SQCN時(shí),求t的值;

(3)當(dāng)t為何值時(shí),PQM的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在QCN的邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦前夕,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價(jià)為每只4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人小丁第天生產(chǎn)的粽子數(shù)量為只,滿足如下關(guān)系:

1)小丁第幾天生產(chǎn)的粽子數(shù)量為280只?

2)如圖,設(shè)第天生產(chǎn)的每只粽子的成本是元,之間的關(guān)系可用圖中的函數(shù)圖象來(lái)刻畫(huà).若小丁第天創(chuàng)造的利潤(rùn)為元,求之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案