(2004 天津)在建筑樓梯時(shí),設(shè)計(jì)者要考慮樓梯的安全程度.如圖所示,虛線為樓梯的斜度線,斜度線與地板的夾角為傾角θ,一般情況下,傾角θ愈小,樓梯的安全程度愈高.

a)

  如圖所示,設(shè)計(jì)者為提高樓梯的安全程度,要把樓梯的傾角由減至,這樣樓梯占用地板的長(zhǎng)度由增加到.已知,求樓梯占用地板的長(zhǎng)度增加了多少?(精確到0.01m)

(參考數(shù)據(jù):sin36°=0.5878,cos36°=0.8090,tan36°=0.7265,sin40°=0.6428,cos40°=0.7660,tan40°=0.8391)

答案:0.62m
解析:

解 由題知:在RtABC中,

RtABD中,AB=3.3654,∠ADB=36°,

答:樓梯占用地板的長(zhǎng)度增加了0.62m


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、數(shù)學(xué)大師陳省身于2004年12月3日在天津逝世,陳省身教授在微分幾何等領(lǐng)域做出了杰出的貢獻(xiàn),是獲得沃爾夫獎(jiǎng)的惟一華人,他曾經(jīng)指出,平面幾何中有兩個(gè)重要定理,一個(gè)是勾股定理,另一個(gè)是三角形內(nèi)角和定理,后者表明平面三角形可以千變?nèi)f化,但是三個(gè)內(nèi)角的和是不變量,下列幾個(gè)關(guān)于不變量的敘述:
(1)邊長(zhǎng)確定的平行四邊形ABCD,當(dāng)A變化時(shí),其任意一組對(duì)角之和是不變的;
(2)當(dāng)多邊形的邊數(shù)不斷增加時(shí),它的外角和不變;
(3)當(dāng)△ABC繞頂點(diǎn)A旋轉(zhuǎn)時(shí),△ABC各內(nèi)角的大小不變;
(4)在放大鏡下觀察,含角α的圖形放大時(shí),角α的大小不變;
(5)當(dāng)圓的半徑變化時(shí),圓的周長(zhǎng)與半徑的比值不變;
(6)當(dāng)圓的半徑變化時(shí),圓的周長(zhǎng)與面積的比值不變.
其中錯(cuò)誤的敘述有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

(2004 天津)已知一次函數(shù),二次函數(shù)

(1)根據(jù)表中給出的x的值,計(jì)算對(duì)應(yīng)的函數(shù)值,并填在表格中;

(2)觀察第(1)問(wèn)表中有關(guān)的數(shù)據(jù),證明如下結(jié)論:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立;

(3)試問(wèn):是否存在二次函數(shù),其圖像經(jīng)過(guò)點(diǎn)(-5,2),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立?若存在,求函數(shù)的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案