【題目】南山植物園中現(xiàn)有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.

(1)請用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;

(2)現(xiàn)根據(jù)實際需要對A園區(qū)進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.

①求x、y的值;

②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:

求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)

【答案】12x2+6xy;(2②57600元;

【解析】

試題分析:(1)根據(jù)長方形的面積公式和正方形的面積公式分別計算A、B兩園區(qū)的面積,再相加即可求解;

(2)①根據(jù)等量關系:整改后A區(qū)的長比寬多350米;整改后兩園區(qū)的周長之和為980米;列出方程組求出x,y的值;

②代入數(shù)值得到整改后A、B兩園區(qū)的面積之和,再根據(jù)凈收益=收益﹣投入,列式計算即可求解.

解:(1)(x+y)(x﹣y)+(x+3y)(x+3y)

=x2﹣y2+x2+6xy+9y2

=2x2+6xy+8y2(平方米)

答:A、B兩園區(qū)的面積之和為(2x2+6xy)平方米;

(2)(x+y)+(11x﹣y)

=x+y+11x﹣y

=12x(米),

(x﹣y)﹣(x﹣2y)

=x﹣y﹣x+2y

=y(米),

依題意有:

解得

12xy=12×30×10=3600(平方米),

(x+3y)(x+3y)

=x2+6xy+9y2

=900+1800+900

=3600(平方米),

(18﹣12)×3600+(26﹣16)×3600

=6×3600+10×3600

=57600(元).

答:整改后A、B兩園區(qū)旅游的凈收益之和為57600元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】不等式-3x+6>0的正整數(shù)解有( ).

A1個 B2個 C3個 D無數(shù)多個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A0,α),Bb,α),且α、b滿足(a﹣22+|b﹣4|=0,現(xiàn)同時將點AB分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應點CD,連接AC,BD,AB

1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD

2)在y軸上是否存在一點M,連接MC,MD,使SMCD=S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由.

3)點P是線段BD上的一個動點,連接PA,PO,當點PBD上移動時(不與B,D重合)的值是否發(fā)生變化,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形有一邊長3cm,周長為13cm,則該等腰三角形的底邊為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB交于點D,則AD的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,在RtABC中,C=90°,點D是線段CA延長線上一點,且AD=AB.點F是線段AB上一點,連接DF,以DF為斜邊作等腰RtDFE,連接EAEA滿足條件EAAB

1)若AEF=20°,ADE=50°,AC=2,求AB的長度;

2)求證:AE=AF+BC;

3)如圖2,點F是線段BA延長線上一點,探究AEAF、BC之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的每一個外角都等于30°,則這個多邊形的邊數(shù)是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b,都有ab=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算.比如:25=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5

(1)求3(﹣2)的值;

(2)若3x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列解題過程的空白處填上適當?shù)膬热荩ㄍ评淼睦碛苫驍?shù)學表達式)

如圖,已知ABCD,BE、CF分別平分ABCDCB,求證:BECF

證明:

ABCD,(已知)

∴∠ = .(

,(已知)

∴∠EBC=ABC,(角的平分線定義)

同理,FCB= BCD

∴∠EBC=FCB.(等式性質)

BECF.(

查看答案和解析>>

同步練習冊答案