【題目】如圖,將含45°角的直角三角尺放置在平面直角坐標(biāo)系中,其中A(2,0),B(0,1),則直線BC的函數(shù)表達式為_____.

【答案】yx+1

【解析】

CCDx軸于點D,則可證得△AOB≌△CDA,可求得CDOD的長,可求得C點坐標(biāo),利用待定系數(shù)法可求得直線BC的解析式.

如圖,過CCDx軸于點D

∵∠CAB=90°,∴∠DAC+BAO=BAO+ABO=90°,∴∠DAC=ABO

在△AOB和△CDA中,∵,∴△AOB≌△CDAAAS).

A(﹣2,0),B01),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設(shè)直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1

故答案為:yx+1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從社會效益和經(jīng)濟效益出發(fā),某地制定了三年規(guī)劃,投入資金進行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè)。根據(jù)規(guī)劃,第一年度投入資金800萬元,第二年度比第一年度減少,第三年度比第二年度減少。第一年度當(dāng)?shù)芈糜螛I(yè)收入估計為400萬元,要使三年內(nèi)的投入資金與旅游業(yè)總收入持平,旅游業(yè)收入的年增長率應(yīng)是多少?(以下數(shù)據(jù)供選用: =1.414 =3.606 計算結(jié)果精確到百分位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人分別從相距30千米的A、B兩地同時相向而行,經(jīng)過3小時后相距3千米,再經(jīng)過2小時,甲到B地所剩的路程是乙到A地所剩路程的2倍,試求甲、乙兩人的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°AC=3,BC=4,AB=5,且AC在直線1上,將ABC繞點A順時針旋轉(zhuǎn)到位置①,可得到點P1,將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,按此規(guī)律繼續(xù)旋轉(zhuǎn),得到點P2018為止,則AP2018=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在⊙O中,AB是弦,半徑OC⊥AB,垂足為點D,要使四邊形OACB為菱形,還需要添加一個條件,這個條件可以是( )

A.AD=BD
B.OD=CD
C.∠CAD=∠CBD
D.∠OCA=∠OCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=12,AD=8,∠ABC的平分線交CD于點F,交AD的延長線于點E,CG⊥BE,垂足為G,若EF=2,則線段CG的長為( )

A.
B.4
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.

(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為 ,OP=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面實數(shù)比較大小正確的是( )
A.3>|﹣7|
B. >3
C.0<﹣2
D.( 2<31

查看答案和解析>>

同步練習(xí)冊答案