【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲跑步中途改為步行,到達圖書館恰好用30 min.小東騎自行車以300 m/min的速度直接回家.兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖9所示.

(1)家與圖書館之間的路程為 m,小玲步行的速度為 m/min;

(2)求小東離家的路程y關于x的函數(shù)解析式,并寫出自變量的取值范圍;

(3)求兩人相遇的時間.

【答案】(1)4000 100 (2) (3)8分鐘

【解析】

(1)認真分析圖象得到路程與速度數(shù)據(jù);

(2)采用方程思想列出小東離家路程y與時間x之間的函數(shù)關系式;

(3)兩人相遇實際上是函數(shù)圖象求交點.

(1)結合題意和圖象可知,線段CD為小東路程與時間函數(shù)圖象,折線O-A-B為小玲路程與時間圖象,

則家與圖書館之間路程為4000m,小玲步行速度為2000÷20=100m/s,

故答案為:4000,100;

(2)∵小東從離家4000m處以300m/min的速度返回家,

xmin時他離家的路程y=4000﹣300x,

自變量x的范圍為0≤x≤

(3)由圖象可知,兩人相遇是在小玲改變速度之前,

4000﹣300x=200x,

解得x=8,

∴兩人相遇時間為第8分鐘.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題探究:
(1)如圖①,邊長為4的等邊△OAB位于平面直角坐標系中,將△OAB折疊,使點B落在OA的中點處,則折痕長為;

(2)如圖②,矩形OABC位于平面直角坐標系中,其中OA=8,AB=6,將矩形沿線段MN折疊,點B落在x軸上,其中AN= AB,求折痕MN的長;

(3)如圖③,四邊形OABC位于平面直角坐標系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于點A,點Q(4,3)為四邊形內部一點,將四邊形折疊,使點B落在x軸上,問是否存在過點Q的折痕,若存在,求出折痕長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與⊙M相交于A、B、C、D四點,其中A、B兩點的坐標分別為(﹣1,0),(0,﹣2),點D在x軸上且AD為⊙M的直徑.點E是⊙M與y軸的另一個交點,過劣弧 上的點F作FH⊥AD于點H,且FH=1.5

(1)求點D的坐標及該拋物線的表達式;
(2)若點P是x軸上的一個動點,試求出△PEF的周長最小時點P的坐標;
(3)在拋物線的對稱軸上是否存在點Q,使△QCM是等腰三角形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD//BCAB//CD.請完成下面的推理過程,填寫理由或數(shù)學式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代換)

AB//CD(_______)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為15,AG=CH=12,BG=DH=9,連接GH,則線段GH的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結論中不正確的是(  )

A. AB=BC時,四邊形ABCD是菱形

B. ACBD時,四邊形ABCD是菱形

C. 當∠ABC=90°時,四邊形ABCD是矩形

D. AC=BD時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蔬菜經營戶從蔬菜批發(fā)市場批發(fā)蔬菜進行零售,部分蔬菜批發(fā)價格與零售價格如下表:

請解答下列問題:

(1)第一天,該經營戶批發(fā)西紅柿和西蘭花兩種蔬菜共300 kg,用去了1520元錢,這兩種蔬菜當天全部售完后一共能賺多少元錢?

(2)第二天,該經營戶用1520元錢仍然批發(fā)西紅柿和西蘭花,要想當天全部售完后所賺錢數(shù)不少于1050元,則該經營戶最多能批發(fā)西紅柿多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在中,,分別過點作互相平行的直線、,過點的直線分別交直線、于點.

(1);

,直接寫出的數(shù)量關系;

如圖1,不垂直,判斷上述結論是否還成立,并說明理由;

(2)如圖2,,,求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司欲招聘一名公關人員,對甲、乙、丙、丁四位候選人進行了面試和筆試,他們的成績如表:

候選人

測試成績

(百分制)

面試

86

92

90

83

筆試

90

83

83

92

如果公司認為,作為公關人員面試的成績應該比筆試的成績更重要,并分別賦予它們的權.根據(jù)四人各自的平均成績,公司將錄。ā 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案