【題目】若二次函數(shù)y=-2x2+bx+c的頂點(diǎn)坐標(biāo)為(2,-3),則此函數(shù)有( )
A.最大值2
B.最大值-3
C.最小值2
D.最小值-3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點(diǎn)間的距離為:AB=我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x2+y2=r2.
問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為 .
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長PD交x軸于點(diǎn)B,連接AB.
①證明:AB是⊙P的切線;
②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以Q為圓心,以OQ為半徑的⊙Q的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)(3,2)關(guān)于x軸的對稱點(diǎn)為 ( )
A. (-3,一2) B. (3,-2) C. (-3,2) D. (2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某縣2016年初中畢業(yè)生的實(shí)驗(yàn)考查成績等級的分布情況,隨機(jī)抽取了該縣若干名學(xué)生的實(shí)驗(yàn)考查成績進(jìn)行統(tǒng)計分析,并根據(jù)抽取的成績繪制了如下的統(tǒng)計圖表:
成績等級 | A | B | C | D |
人數(shù) | 60 | x | y | 10 |
百分比 | 30% | 50% | 15% | m |
請根據(jù)以上統(tǒng)計圖表提供的信息,解答下列問題:
(1)本次抽查的學(xué)生有 名;
(2)表中x,y和m所表示的數(shù)分別為:x= ,y= ,m= ;
(3)請補(bǔ)全條形統(tǒng)計圖;
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計2016年該縣5400名初中畢業(yè)生實(shí)驗(yàn)考查成績?yōu)镈類的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為5厘米,當(dāng)OP=6厘米時,點(diǎn)P在⊙O . (填“內(nèi)”或“外”或“上”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏家對面新建了一幢圖書大廈,小敏在自家窗口測得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20米.
(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若|a-2|+|b-3|=0,則P(-a,b)關(guān)于y軸的對稱點(diǎn)P′的坐標(biāo)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com