【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.
【答案】(1)證明見解析(2)2-2
【解析】試題分析:
(1)由旋轉(zhuǎn)的性質(zhì)易得:AD=AB,AE=AC,∠DAE=∠BAC,結(jié)合已知和圖形可得AD=AC=AB=AE,∠EAC=∠DAB,再由“SAS”可證△AEC≌△ADB;
(2)由四邊形ADFC是菱形可得DF=AC=AB=2,AC∥DF,從而可得∠DBA=∠BAC=45°,再由AD=AB可得∠BDA=∠DBA=45°,就能證明△ADB是等腰直角三角形,由勾股定理可得BD的長,最后由BD-DF可得BF的長.
試題解析:
(1)由旋轉(zhuǎn)的性質(zhì)得△ABC≌△ADE,且AB=AC,
∴AE=AD=AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠BAD.
∵在△AEC和△ADB中, ,
∴△AEC≌△ADB(SAS);
(2)∵四邊形ADFC是菱形,
∴DF=AC=AB=2,AC∥DF.
∴∠DBA=∠BAC=45°.
由(1)可知AB=AD,
∴∠DBA=∠BDA=45°,
∴△ABD為直角邊長為2的等腰直角三角形,
∴BD2=AB2+AD2,即BD2=8,解得BD=,
∴BF=BD-DF=-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩個圓柱形玻璃容器各盛有一定量的液體, 甲、乙容器的內(nèi)底面半徑分別為和,現(xiàn)將一個半徑為的圓柱形玻璃棒(足夠長)垂直觸底插入甲容器,此時甲、乙兩個容器的液面高均為(如圖甲),再將此玻璃棒垂直觸底插入乙容器(液體損耗忽略不計),此時乙容器的液面比甲容器的液面高(如圖乙).
(1)求甲、乙兩個容器的內(nèi)底面面積.
(2)求甲容器內(nèi)液體的體積(用含的代數(shù)式表示).
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦放假時,小明一家三口一起乘小轎車去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.
(1)若以小明家為原點(diǎn),向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來;
(2)超市和姥爺家相距多少千米?
(3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車的耗油量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,且滿足.
(1)寫出a、b及AB的距離:a=________;b=________;AB=________.
(2)若動點(diǎn)P從點(diǎn)A出發(fā),以每秒3個點(diǎn)位長度沿數(shù)軸向右勻速運(yùn)動,動點(diǎn)Q從點(diǎn)B出發(fā),以每秒5個單位長度向右勻速運(yùn)動,若P、Q同時出發(fā),問點(diǎn)Q運(yùn)動多少秒追上點(diǎn)P?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費(fèi)用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、面C相對的面分別是 和 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,M,N,P,R分別是數(shù)軸上的四個整數(shù)所對應(yīng)的點(diǎn),其中有一個點(diǎn)是原點(diǎn),并且,MN=NP=PR=1,數(shù)a對應(yīng)的點(diǎn)在M和N之間,數(shù)b對應(yīng)的點(diǎn)在P和R之間,若|a|+|b|=2,則原點(diǎn)是(填M,N,P,R中的一個或幾個)_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我鄉(xiāng)某校舉行全體學(xué)生“定點(diǎn)投籃”比賽,每位學(xué)生投40個,隨機(jī)抽取了部分學(xué)生的投籃結(jié)果,并繪制成如下統(tǒng)計圖表。
組別 | 投進(jìn)個數(shù) | 人數(shù) |
A | 10 | |
B | 15 | |
C | 30 | |
D | m | |
E | n |
根據(jù)以上信息完成下列問題。
①本次抽取的學(xué)生人數(shù)為多少?
②統(tǒng)計表中的m=__________;
③扇形統(tǒng)計圖中E組所占的百分比;
④補(bǔ)全頻數(shù)分布直方圖;
⑤扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù);
⑥本次比賽中投籃個數(shù)的中位數(shù)落在哪一組;
⑦已知該校共有900名學(xué)生,如投進(jìn)個數(shù)少于24個定為不合格,請你估計該校本次投籃比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過C點(diǎn),M為EF的中點(diǎn),則下列結(jié)論正確的是
A. 當(dāng)x=3時,EC<EM B. 當(dāng)y=9時,EC>EM
C. 當(dāng)x增大時,EC·CF的值增大。 D. 當(dāng)y增大時,BE·DF的值不變。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com