【題目】如圖,已知點(diǎn)A(-1,0)和點(diǎn)B(1,2),在軸上確定點(diǎn)P,使得△ABP為直角三角形,則滿足這樣條件的點(diǎn)P的坐標(biāo)是____________________.
【答案】(1,0)或(3,0)
【解析】分析:當(dāng)∠PBA=90°時(shí),即點(diǎn)P的位置有2個(gè);當(dāng)∠BPA=90°時(shí),點(diǎn)P的位置有3個(gè);當(dāng)∠BAP=90°時(shí),在y軸上共有1個(gè)交點(diǎn).
詳解:①以A為直角頂點(diǎn),可過A作直線垂直于AB,此時(shí)與y軸交于一點(diǎn),這一點(diǎn)不合題意,舍去;
②以P為直角頂點(diǎn),可以AB為直徑畫圓,與坐標(biāo)軸共有3個(gè)交點(diǎn),其中P4,P6不合題意舍去,P5點(diǎn)符合要求;
連接BP5,則∠AP5B=90°.
∵點(diǎn)B(1,2),
∴P5(1,0).
③以B為直角頂點(diǎn),可過B作直線垂直于AB,與坐標(biāo)軸交于兩點(diǎn),P2不合題意舍去,P1點(diǎn)符合要求;
∵點(diǎn)A(-1,0),點(diǎn)B(1,2),點(diǎn)P5(1,0)
∴AP5=2,BP5=2,
∴AP5=BP5=2,
∴△ABP5是等腰直角三角形,
∴∠AP5B=45°,
∴∠BP1P5=45°,
∴P1P5= BP5=2,
∴OP1=OP5+ P1P5=3,
∴P1 (3,0).
故答案為:(1,0)或(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC 的邊OC 、OA 分別與 x 軸、 y 軸重合, AOC 90,BCO 45, AB // OC , BC 6 ,點(diǎn)C 的坐標(biāo)為 9,0.
(1)求點(diǎn) B 的坐標(biāo);
(2)若直線 DE 交四邊形的對(duì)角線 BO 于點(diǎn) D ,交 y 軸于點(diǎn) E ,且OE 2 , OD 2BD ,求:
① ODE 的面積;
②點(diǎn) D 的坐標(biāo).
(3)在(2)的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn) P ,使以O 、E 、P 、D 為頂點(diǎn)的四邊形是平行四邊形? 若存在,請(qǐng)直接寫出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問題:
(1)探究:
①數(shù)軸上表示和的兩點(diǎn)之間的距離是 ;
②數(shù)軸上表示和的兩點(diǎn)之間的距離是 ;
③數(shù)軸上表示和的兩點(diǎn)之間的距離是 ;
(2)歸納:
一般的,數(shù)軸上表示數(shù)m與數(shù)n的兩點(diǎn)之間的距離等于 .
(3)應(yīng)用:
①如果表示數(shù)和3的兩點(diǎn)之間的距離是9,則可記為:,那么 .
②若數(shù)軸上表示數(shù)的點(diǎn)位于與之間,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上.
(1)求拋物線的解析式;
(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F分別是ABCD的邊AD,BC上的點(diǎn),EF=6,∠DEF=60,將四邊形EFCD沿EF翻折,得到 ,’交BC于點(diǎn)G,則△GEF的周長(zhǎng)為( )
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個(gè)教師承擔(dān)本學(xué)期期末考試的第17題的網(wǎng)上閱卷任務(wù),若由這三人中的某一人獨(dú)立完成閱卷任務(wù),則甲需要15小時(shí),乙需要10小時(shí),丙需要8小時(shí)。
(1)如果甲、乙、丙三人同時(shí)改卷,那么需要多少時(shí)間完成?
(2)如果按照甲、乙、丙、甲、乙、丙、……的次序輪流閱卷,每一輪中每人各閱卷1小時(shí)。那么要多少小時(shí)完成?
(3)能否把(2)題所說的甲、乙、丙的次序作適當(dāng)調(diào)整,其余的不變,使得完成這項(xiàng)任務(wù)的時(shí)間至少提前半小時(shí)?(答題要求:如認(rèn)為不能,需要說明理由;如認(rèn)為能,請(qǐng)至少說出一種輪流的次序,并求出相應(yīng)能提前多少時(shí)間完成閱卷任務(wù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點(diǎn)A(-2,0),與y軸交于點(diǎn)C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)B(m,n),連結(jié)OB.若S△AOB=6,S△BOC=2.
(1)求一次函數(shù)的表達(dá)式;
(2)求反比例函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有8筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱后的紀(jì)錄如下:
回答下列問題:
(1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重__________千克;
(2)與標(biāo)準(zhǔn)重量比較,8筐白菜總計(jì)超過或不足多少千克?
(3)若白菜每千克售價(jià)2.6元,則出售這8筐白菜可賣多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com