【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線經(jīng)過原點,頂點為,且與直線相交于兩點.
(1)求拋物線的解析式;
(2)求、兩點的坐標(biāo);
(3)若點為軸上的一個動點,過點作軸與拋物線交于點,則是否存在以為頂點的三角形與相似?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2),;(3);坐標(biāo)為或或或.
【解析】
(1)可設(shè)頂點式,把原點坐標(biāo)代入可求得拋物線解析式,
(2)聯(lián)立直線與拋物線解析式,可求得C點坐標(biāo);
(3)設(shè)出N點坐標(biāo),可表示出M點坐標(biāo),從而可表示出MN、ON的長度,當(dāng)△MON和△ABC相似時,利用三角形相似的性質(zhì)可得或,可求得N點的坐標(biāo)
解:(1)∵頂點坐標(biāo)為,
∴設(shè)拋物線解析式為,
又拋物線過原點,∴,
解得:,
∴拋物線解析式為:,
即.
(2)聯(lián)立拋物線和直線解析式可得,
解得:或,
∴,;
(3)存在;坐標(biāo)為或或或.
理由:假設(shè)存在滿足條件的點,
設(shè),則,
∴,,
由(2)知,,,
∵軸于點,
∴,
∴當(dāng)和相似時,有或,
①當(dāng)時,
∴,即,
∵當(dāng)時、、不能構(gòu)成三角形,
∴,
∴,
∴,
解得:或,
此時點坐標(biāo)為:或;
②當(dāng)時,
∴,
即,
∴,
∴,
解得:或,
此時點坐標(biāo)為:或,
綜上可知,在滿足條件的點,其坐標(biāo)為:或或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船以40km/h的速度沿既定航線由西向東航行,途中接到臺風(fēng)警報,某臺風(fēng)中心正以20km/h的速度由南向北移動,距臺風(fēng)中心200km的圓形區(qū)域(包括邊界)都屬臺風(fēng)影響區(qū).當(dāng)這艘輪船接到臺風(fēng)警報時,它與臺風(fēng)中心的距離BC=500km,此時臺風(fēng)中心與輪船既定航線的最近距離BA=300km.
(1)如果這艘輪船不改變航向,經(jīng)過9小時,輪船與臺風(fēng)中心相距多遠(yuǎn)?它此時是否受到臺風(fēng)影響?
(2)如果這艘輪船會受到臺風(fēng)影響,那么從接到警報開始,經(jīng)過多長時間它就會進入臺風(fēng)影響區(qū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個定點坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線PQ的同側(cè)有兩點M,N,點T在直線PQ上,若∠MTP=∠NTQ,則稱點M,N為關(guān)于直線PQ的衍射點.如圖2,BD是矩形ABCD的對角線,E是邊BC延長線上的一點,且CE=BC,連接AE交CD于點F,交BD于點P,連接BF,CP.
(1)求證:點A,B是關(guān)于直線CD的衍射點.
(2)若點C,F是關(guān)于直線BD的衍射點,CP=2PF=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=( )
A、 B、 C、 D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某政府工作報告中強調(diào),2019年著重推進鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調(diào)查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個月的銷售情況,A種湘蓮禮盒進價72元/盒,售價120元/盒,B種湘蓮禮盒進價40元/盒,售價80元/盒,這兩種湘蓮禮盒這個月平均每天的銷售總額為2800元,平均每天的總利潤為1280元.
(1)求該店平均每天銷售這兩種湘蓮禮盒各多少盒?
(2)小亮調(diào)査發(fā)現(xiàn),種湘蓮禮盒售價每降3元可多賣1盒.若種湘蓮禮盒的售價和銷量不變,當(dāng)種湘蓮禮盒降價多少元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.
(1)求、的值;
(2)如圖①,連接,線段上的點關(guān)于直線的對稱點恰好在線段上,求點的坐標(biāo);
(3)如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最。咳绻嬖,求出點的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,△ABC三個頂點的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(記過保留根號和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從下列4個命題中任取一個:①三點確定一個圓:②平分弦的直徑平分弦所對的弧:③弦相等,所對的圓心角相等;④在半徑為4的圓中,30°的圓心角所對的弧長為,是真命題的概率是( ).
A.1B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com