【題目】下列命題中,假命題是( )

A. 經(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn) B. 平行四邊形的對(duì)角線(xiàn)相等

C. 兩腰相等的梯形叫做等腰梯形 D. 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

【答案】B

【解析】試題解析:A、經(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn),故本選項(xiàng)正確;

B、平行四邊形的對(duì)角線(xiàn)不一定相等,故本選項(xiàng)錯(cuò)誤;

C、兩腰相等的梯形叫做等腰梯形,故本選項(xiàng)正確;

D、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑,故本選項(xiàng)正確.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(3分)據(jù)《2014年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)》顯示,2014年我國(guó)教育科技和文化體育事業(yè)發(fā)展較快,其中全年普通高中招生7966000人,將7966000用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,∠C為直角,AB=2,則這個(gè)三角形的外接圓半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)將ABD平移,使D沿BD延長(zhǎng)線(xiàn)移至C得到A′B′D′,A′B′交AC于E,AD平分BAC.

(1)猜想B′EC與A′之間的關(guān)系,并寫(xiě)出理由.

(2)如圖將ABD平移至如圖(2)所示,得到A′B′D′,請(qǐng)問(wèn):A′D平分B′A′C嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)Ma,3和點(diǎn)N2,a+b關(guān)于x軸對(duì)稱(chēng),則b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(﹣5,0),B(3,0).

(1)在y軸上找一點(diǎn)C,使之滿(mǎn)足S△ABC=16,求點(diǎn)C的坐標(biāo)(要有必要的步驟);

(2)在直角坐標(biāo)平面上找一點(diǎn)C,能滿(mǎn)足S△ABC=16的C有多少個(gè)?這些點(diǎn)有什么特征?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=x2+bx+cy軸交于點(diǎn)C,軸交于點(diǎn)A、B,且AB2,拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=2;

1 求拋物線(xiàn)的函數(shù)表達(dá)式;

2 如果拋物線(xiàn)的對(duì)稱(chēng)軸上存在一點(diǎn)P,使得APC周長(zhǎng)的最小,求此時(shí)APC周長(zhǎng)

3 設(shè)D為拋物線(xiàn)上一點(diǎn),E為對(duì)稱(chēng)軸上一點(diǎn),若以點(diǎn)AB、D、E為頂點(diǎn)的四邊形是菱形,求點(diǎn)D的坐標(biāo)直接寫(xiě)出結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一架2.5米長(zhǎng)的梯子AB斜靠在豎直的墻AC上,這時(shí)梯子底部B到墻底端的距離為0.7米,考慮爬梯子的穩(wěn)定性,現(xiàn)要將梯子頂部A沿墻下移0.4米到A1處,問(wèn)梯子底部B將外移多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,若BOC=120°AD=7,BD=10,則平行四邊形ABCD的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案