【題目】閱讀與理解:
如圖,一只甲蟲在5×5的方格(每個(gè)方格邊長(zhǎng)均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右)爬行記為“+”,向下(或向左)爬行記為“﹣”,并且第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
例如:從A到B記為:A→B(+1,+4),從D到C記為:D→C(﹣1,+2).
思考與應(yīng)用:
(1)圖中B→C( , )C→D( , )
(2)若甲蟲從A到P的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請(qǐng)?jiān)趫D中標(biāo)出P的位置.
(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請(qǐng)計(jì)算該甲蟲走過的總路程S.
【答案】(1)+2,0,+1,﹣2;(2)若甲蟲從A到P的行走路線依次為:A→E→F→P,圖中P的即為所求.見解析;(3)甲蟲走過的總路程為16.
【解析】
(1)B→C只向右走3格;C→D先向右走1格,再向下走2格,由此寫出即可.
(2)由(+3,+2)→(+1,+3)→(+1,﹣2)可知從A處右移3格,上移2格,再右移1格,上移3格,右移1格,下移2格即是甲蟲P處的位置;
(3)由A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2)知:先向右移動(dòng)1格,向上移動(dòng)4格,向右移動(dòng)2格,再向右移動(dòng)1格,向下移動(dòng)2格,最后向左移動(dòng)4格,向下移動(dòng)2格,把移動(dòng)的距離相加即可.
(1)圖中B→C(+2.0),C→D(+1,﹣2).
故答案為:+2,0,+1,﹣2.
(2)若甲蟲從A到P的行走路線依次為:A→E→F→P,圖中P的即為所求.
(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),
甲蟲走過的總路程S=1+4+2+1+2+4+2=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,G是CD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.
(1)①猜想圖1中線段BG、線段DE的長(zhǎng)度關(guān)系及所在直線的位置關(guān)系,不必證明;
②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)任意角度α,得到如圖2情形.請(qǐng)你通過觀察、測(cè)量等方法判斷①中得到的結(jié)論是否仍然成立,并證明你的判斷.
(2)將原題中正方形改為矩形(如圖3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖4為例簡(jiǎn)要說明理由.
(3)在第(2)題圖4中,連接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘.在整個(gè)步行過程中,甲、乙兩人的距離(米)與甲出發(fā)的時(shí)間(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙用16分鐘追上甲;③乙走完全程用了30分鐘;④乙到達(dá)終點(diǎn)時(shí)甲離終點(diǎn)還有360米.其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如表是一個(gè)4×4(4行4列共16個(gè)“數(shù)”組成)的奇妙方陣,從這個(gè)方陣中選四個(gè)“數(shù)”,而且這四個(gè)“數(shù)”中的任何兩個(gè)不在同一行,也不在同一列,有很多選法,把每次選出的四個(gè)“數(shù)”相加,其和是定值,則方陣中第三行三列的“數(shù)”是( )
30 |
| 2sin60° | 22 |
﹣3 | ﹣2 | ﹣sin45° | 0 |
|﹣5| | 6 | 23 | |
()﹣1 | 4 |
| ()﹣1 |
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)兩個(gè)班各選派10名學(xué)生參加“垃圾分類知識(shí)競(jìng)賽,各參賽選手的成績(jī)?nèi)缦拢?/span>
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下
班級(jí) | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1)班 | 100 | 93 | 93 | 12 | |
八(2)班 | 99 | 95 | 8.4 |
(1)求表中,,的值;
(2)依據(jù)數(shù)據(jù)分析表,有同學(xué)認(rèn)為最高分在(1)班,(1)班的成績(jī)比(2)班好.但也有同學(xué)認(rèn)為(2)班的成績(jī)更好.請(qǐng)你寫出兩條支持八(2)班成績(jī)更好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做“友好三角形”.
性質(zhì):如果兩個(gè)三角形是“友好三角形”,那么這兩個(gè)三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請(qǐng)直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A、B、C分別表示三個(gè)村莊,AB=1000米,BC=600米,AC=800米,在社會(huì)主義新農(nóng)村建設(shè)中,為了豐富群眾生活,擬建一個(gè)文化活動(dòng)中心,要求這三個(gè)村莊到活動(dòng)中心的距離相等,則活動(dòng)中心P的位置應(yīng)在( )
A.AB中點(diǎn) B.BC中點(diǎn) C. AC中點(diǎn) D.∠C的平分線與AB的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程2(x﹣3)﹣m=2的解和方程3x﹣7=2x的解相同.
(1)求m的值;
(2)已知線段AB=m,在直線AB上取一點(diǎn)P,恰好使AP=2PB,點(diǎn)Q為PB的中點(diǎn),求線段AQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀材料:如圖(1),在數(shù)軸上示的數(shù)為,點(diǎn)表示的數(shù)為,則點(diǎn)到點(diǎn)的距離記為.線段的長(zhǎng)可以用右邊的數(shù)減去左邊的數(shù)表示,即.
解決問題:如圖(2),數(shù)軸上點(diǎn)表示的數(shù)是-4,點(diǎn)表示的數(shù)是2,點(diǎn)表示的數(shù)是6.
(1)若數(shù)軸上有一點(diǎn),且,則點(diǎn)表示的數(shù)為 ;
(2)點(diǎn)、、開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),若點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)秒鐘過后,若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為.則點(diǎn)表示的數(shù)是 (用含的代數(shù)式表示), (用含的代數(shù)式表示).
(3)請(qǐng)問:的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com