【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)(,),(,)。
(1)求這兩個(gè)函數(shù)的函數(shù)關(guān)系式;
(2)當(dāng)為何值時(shí),一次函數(shù)值不小于反比例函數(shù)值.
【答案】(1)反比例函數(shù)的關(guān)系式為y=,一次函數(shù)的關(guān)系式為y=x1;(2)x≤-3或0<x≤2.
【解析】
(1)用待定系數(shù)法求出一次函數(shù)及反比例函數(shù)的解析式;
(2)由函數(shù)的圖像可觀察出一次函數(shù)與反比例函數(shù)值的大小關(guān)系.
解:(1)設(shè)一次函數(shù)的關(guān)系式為y=kx+b,反比例函數(shù)的關(guān)系式為y=,
∵反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)Q(2,3),
∴3=,n=6.
∴反比例函數(shù)的關(guān)系式為y=;
將點(diǎn)P(3,m)的坐標(biāo)代入上式得m==2,
∴點(diǎn)P的坐標(biāo)為(-3,2);
由于一次函數(shù)y=kx+b的圖像過(guò)P(3,2)和Q(2,3),
將P(-3,2)和Q(2,3)代入解析式得,
解得
∴所求一次函數(shù)的關(guān)系式為y=x1.
(2)由,解得x=3或x=2,
根據(jù)解析式畫(huà)出兩個(gè)函數(shù)圖像如下圖所示,
若使一次函數(shù)值不小于反比例函數(shù)值,則通過(guò)圖像觀察出:
x≤3或0<x≤2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點(diǎn)C在x軸的負(fù)半軸上,將平行四邊形 ABCO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過(guò)點(diǎn)O,點(diǎn)F恰好落在x軸的正半軸上.若點(diǎn)D在反比例函數(shù)y=(x<0)的圖象上,則k的值為( 。
A.4B.12C.8D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜種植基地為提高蔬菜產(chǎn)量,計(jì)劃對(duì)甲、乙兩種型號(hào)蔬菜大棚進(jìn)行改造,根據(jù)預(yù)算,改造2個(gè)甲種型號(hào)大棚比1個(gè)乙種型號(hào)大棚多需資金6萬(wàn)元,改造1個(gè)甲種型號(hào)大棚和2個(gè)乙種型號(hào)大棚共需資金48萬(wàn)元.
(1)改造1個(gè)甲種型號(hào)和1個(gè)乙種型號(hào)大棚所需資金分別是多少萬(wàn)元?
(2)已知改造1個(gè)甲種型號(hào)大棚的時(shí)間是5天,改造1個(gè)乙種型號(hào)大概的時(shí)間是3天,該基地計(jì)劃改造甲、乙兩種蔬菜大棚共8個(gè),改造資金最多能投入128萬(wàn)元,要求改造時(shí)間不超過(guò)35天,請(qǐng)問(wèn)有幾種改造方案?哪種方案基地投入資金最少,最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料題:
浙教版九上作業(yè)本①第18頁(yè)有這樣一個(gè)題目:已知,如圖一,P是正方形ABDC內(nèi)一點(diǎn),連接PA、PB、PC,若PC=2,PA=4,∠APC=135°,求PB的長(zhǎng).
小明看到題目后,思考了許久,仍沒(méi)有思路,就去問(wèn)數(shù)學(xué)老師,老師給出的提示是:將△PAC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△P'AB,再利用勾股定理即可求解本題. 請(qǐng)根據(jù)數(shù)學(xué)老師的提示幫小明求出圖一中線段PB的長(zhǎng)為 .
(方法遷移):已知:如圖二,△ABC為正三角形,P為△ABC內(nèi)部一點(diǎn),若PC=1,PA=2,PB=,求∠APB的大小.
(能力拓展):已知:如圖三,等腰三角形ABC中∠ACB=120°,D、E是底邊AB上兩點(diǎn)且∠DCE=60°,若AD=2,BE=3,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(4分)如圖,拋物線的對(duì)稱軸是.且過(guò)點(diǎn)(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正確的結(jié)論是 .(填寫(xiě)正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,割線ABC與⊙O相交于B、C兩點(diǎn),D為⊙O上一點(diǎn),E為弧BC的中點(diǎn),OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求證明:AD是⊙D的切線;
(2)若∠A=60°,⊙O的半徑為4,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與雙曲線相交于A(-1,2)和B(2,b)兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出不等式的解集;
(3)經(jīng)研究發(fā)現(xiàn):在y軸負(fù)半軸上存在若干個(gè)點(diǎn)P,使得為等腰三角形。請(qǐng)直接寫(xiě)出P點(diǎn)所有可能的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以lcm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)
(1)填空:當(dāng)t為 s時(shí),△ABF是直角三角形;
(2)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),四邊形AFCE是否是特殊四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,,P為CD邊上的一點(diǎn),過(guò)P點(diǎn)作BP的垂線交AD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.
(1)判斷線段DE、CF、CP之間的數(shù)量關(guān)系,并說(shuō)明理由.
(2)若,,寫(xiě)出y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com