【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進的速度,沿著東南方向航行,結果在小島C處與乙船相遇.假設乙船的速度和航向保持不變,求:
(1)港口A與小島C之間的距離;
(2)甲輪船后來的速度.
科目:初中數學 來源: 題型:
【題目】在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點P為直線BC上一動點(不與點B,C重合),連接AP,將線段PA繞點P順時針旋轉α度得到線段PQ,連接CQ.
(1)當α=90°,且點P在線段BC上時,過P作PF∥AC交直線AB于點F,如圖1,圖中與△APF全等的是哪個三角形,∠ACQ的度數.
(2)當點P在BC延長線上,AB:AC=m:n時,如圖2,試求線段BP與CQ的比值;
(3)當點P在直線BC上,α=60°,∠APB=30°,CP=4時,請直接寫出線段CQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B在反比例函數的圖象上,點C,D在反比例函數的圖象上,AC//BD//y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為( )
A. 4 B. 3 C. 2 D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于同一銳角α有:sin2α+cos2α=1,現銳角A滿足sinA+cosA=.
試求:(1)sinAcosA的值;(2)sinA﹣cosA的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC 中,D 是 BC 邊的中點,E、F 分別在 AD 及其延長線上,CE∥BF,連接BE、CF.
(1)求證:△BDF ≌△CDE;
(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從甲學校到乙學校有A1、A2、A3三條線路,從乙學校到丙學校有B1、B2二條線路.
(1)利用樹狀圖或列表的方法表示從甲學校到丙學校的線路中所有可能出現的結果;
(2)小張任意走了一條從甲學校到丙學校的線路,求小張恰好經過了B1線路的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,直線與x軸、y軸分別交于點A、C兩點,點B的橫坐標為2.
圖1 圖2
(1)求A、C兩點的坐標和拋物線的函數關系式;
(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且S△PCD=2S△PAD ,求點P的坐標;
(3)如圖2,另有一條直線y=-x與直線AC交于點M,N為線段OA上一點,∠AMN=∠AOM.點Q為x軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點C作CE∥BD,過點D作DE∥AC,CE與DE相交于點E.
(1)求證:四邊形CODE是矩形.
(2)若AB=5,AC=6,求四邊形CODE的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com