【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.

(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面積.

【答案】
(1)證明:①∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS)
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),
∴AD=DC= BC,
∴四邊形ADCF是菱形
(3)解:連接DF,

∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=4,
∵四邊形ADCF是菱形,
∴S菱形ADCF= ACDF= ×3×4=6.
【解析】(1)根據(jù)平行線的性質(zhì)證明∠AFE=∠DBE,再根據(jù)中點(diǎn)的定義及三角形中線的定義證明AE=DE,BD=CD,然后利用三角形全等的判定定理證明△AEF≌△DEB即可。
(2)根據(jù)(1)的結(jié)論及已知先證四邊形ADCF是平行四邊形,再利用直角三角形斜邊上的中線等于斜邊的一半證明AD=DC,然后根據(jù)一組鄰邊相等的平行四邊形是菱形,即可證得結(jié)論。
(3)連接DF,易證四邊形ABDF是平行四邊形,就可求出DF的長(zhǎng),再根據(jù)菱形的面積等于兩對(duì)角線之積的一半,求得菱形的面積即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點(diǎn)O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示:0.0000076_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有如下命題:①負(fù)數(shù)沒有立方根;②一個(gè)實(shí)數(shù)的立方根不是正數(shù)就是負(fù)數(shù);③一個(gè)正數(shù)或負(fù)數(shù)的立方根與這個(gè)數(shù)同號(hào);④如果一個(gè)數(shù)的立方根是這個(gè)數(shù)本身,那么這個(gè)數(shù)是10.其中錯(cuò)誤的是(

A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過點(diǎn)A(-6,0)的直線 與直線 :y=2x相交于點(diǎn)B(m,4),

(1)求直線 的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)且垂直于x軸的直線與 , 的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),求出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車同時(shí)從M地出發(fā),以各自的速度勻速向N地行駛.甲車先到達(dá)N地,停留1h后按原路以原速勻速返回,直到兩車相遇,乙車的速度為50km/h.如圖是兩車之間的距離y(km)與乙車行駛時(shí)間x(h)之間的函數(shù)圖象.

(1)甲車的速度是 km/h,M、N兩地之間相距 km;
(2)求兩車相遇時(shí)乙車行駛的時(shí)間;
(3)求線段AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(
A.x3x3=2x6
B.(﹣2x22=﹣4x4
C.(x32=x6
D.x5÷x=x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

(1)三邊長(zhǎng)為5,12,13的三角形是直角三角形;

(2)等邊三角形是軸對(duì)稱圖形,它只有一條對(duì)稱軸;

(3)有兩邊及第三邊上的高線對(duì)應(yīng)相等的兩個(gè)銳角三角形全等;

(4)把正比例函數(shù)y=2x的圖象向上平移兩個(gè)單位所得的直線表達(dá)式為y=2x+2.

其中真命題的是( 。

A. (1)(2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=(x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).

(1)求點(diǎn)A、B、C的坐標(biāo);

(2)設(shè)動(dòng)點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;

(3)P是拋物線上一點(diǎn),請(qǐng)你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案