【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積為_______.

【答案】6cm2

【解析】

由于AE與圓O切于點F,根據(jù)切線長定理有AF=AB=4cm,EF=EC;設(shè)EF=EC=xcm.則DE=(4-x)cm,AE=(4+x)cm, 然后在三角形BCE中由勾股定理可以列出關(guān)于x的方程,解方程即可求出,然后就可以求出△ADE的面積.

∵AE與圓O切于點F,

顯然根據(jù)切線長定理有AF=AB=4cm,EF=EC,

設(shè)EF=EC=xcm,

DE=(4-x)cm,AE=(4+x)cm,

在三角形ADE中由勾股定理得:

(4-x)2+42=(4+x)2,

∴x=1cm,

∴CE=1cm,

∴DE=4-1=3cm,

∴SADE=ADDE÷2=3×4÷2=6(cm2).

故答案為:6cm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時,與其對應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程: =-1; (2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1l2,點A、B在直線l1上,點C、D在直線l2上,點C在點D的右側(cè),∠ADC80°,∠ABC,BE平分∠ABC,DE平分∠ADC,直線BE、DE交于點E

1)寫出∠EDC的度數(shù)_____;

2)試求∠BED的度數(shù)(用含n的代數(shù)式表示);

3)將線段BC向右平行移動,其他條件不變,請直接寫出∠BED的度數(shù)(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》里有一道著名算題:“今有上禾三秉,益實六斗,當(dāng)下禾十秉.下禾五秉,益實一斗,當(dāng)上禾二乘、問上、下禾實一乘各幾何?”大意是:3捆上等谷子結(jié)出的糧食,再加.上六斗,相當(dāng)于10捆下等谷子結(jié)出的糧食.5捆下等谷子結(jié)出的糧食,再加上一斗,相當(dāng)于2捆上等谷子結(jié)出的糧食.問:上等谷子和下等谷子每捆能結(jié)出多少斗糧食?請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB上有一點O,AO=6㎝,BO=8㎝,圓O的半徑為1.5㎝,P點在圓周上,且∠POB=30°.點CA出發(fā)以m cm/s的速度向B運動,點DB出發(fā)以ncm/s的速度向A運動,點EP點出發(fā)繞O逆時針方向在圓周上旋轉(zhuǎn)一周,每秒旋轉(zhuǎn)角度為60°,CD、E三點同時開始運動.

1)若m=2n=3,則經(jīng)過多少時間點C、D相遇;

2)在(1)的條件下,求OEAB垂直時,點C、D之間的距離;

3)能否出現(xiàn)C、DE三點重合的情形?若能,求出m、n的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號)

(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?                         

(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,AE、BF 是角平分線,交于 O .

1)如圖 1AD 是高,∠BAC90°,∠C70°,求∠DAC 和∠BOA 的度數(shù);

2)如圖 2,若 OEOF,求∠C 的度數(shù);

3)如圖 3,若∠C90°,BC8AC6,SCEF4,求 SAOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是某兒童樂園為小朋友設(shè)計的滑梯平面圖.已知BC=4 m,AB=6 m,中間平臺寬度DE=1 m,EN,DM,CB為三根垂直于AB的支柱,垂足分別為N,M,B,EAB=31°,DFBC于點F,CDF=45°,DMBC的水平距離BM的長度.(結(jié)果精確到0.1 m.參考數(shù)據(jù):sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

查看答案和解析>>

同步練習(xí)冊答案