【題目】如圖,已知∠BAD+ADC180°AE平分∠BAD,CDAE相交于F,DGBC的,延長線于G,∠CFE=∠AEB

1)若∠B87°,求∠DCG的度數(shù);

2ADBC是什么位置關系?并說明理由;

3)若∠DABα,∠DGCβ,直接寫出α、β滿足什么數(shù)量關系時,AEDG

【答案】1)∠DCG87°;(2ADBC,理由見解析;(3)當α時,AEDG.理由見解析.

【解析】

1)根據(jù)平行線的判定定理得到ABCD,由平行線的性質得到∠DCG=B=87°;

2)由平行線的性質得到∠BAF=CFE,根據(jù)角平分線的定義得到∠BAF=FAD,等量代換得到∠DAF=CFE,∠DAF=AEB,由平行線的判定即可得到結論;

3)根據(jù)平行線的判定定理得到∠DAF=AEB,根據(jù)角平分線的定義得到∠DAB=2DAF=2AEB,然后根據(jù)平行線的性質即可得到結論.

1∵∠BAD+∠ADC180°

ABCD,

∴∠DCGB87°;

2ADBC,理由如下:

ABCD

∴∠BAFCFE,

AE平分BAD

∴∠BAFFAD

∴∠DAFCFE,

CFEAEB

∴∠DAFAEB,

ADBC;

3)當α時,AEDG.理由:

AEDG,則GAEBDAEBAD,

即當BAD2∠G時,AEDG

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在ABCD中,對角線AC、BD相交于點O.請找出圖中的一對全等三角形,并給予證明;

(2)規(guī)定:一條弧所對的圓心角的度數(shù)作為這條弧的度數(shù).

①如圖,在⊙O中,弦AC、BD相交于點P,已知弧AB、弧CD分別為65°45°,求∠APB;

②一般地,在⊙O中,弦AC、BD相交于點P,若弧AB、弧CD分別為,求∠APB.

(用m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 AB=ACCD⊥ABD,BE⊥ACE,BECD相交于點O

1)求證AD=AE;

2)連接OABC,試判斷直線OA,BC的關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一位農民帶上若干千克自產的土豆進城出售.為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關系,如圖,結合圖象回答下列問題:

1)農民自帶的零錢是多少?

2)求出降價前每千克的土豆價格是多少?

3)降價后他按每千克0.4元將剩余土豆售完,這時他手中的錢(含備用零錢)是26元,試問他一共帶了多少千克土豆?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一節(jié)數(shù)學課上,老師出示了這樣一個問題讓學生探究:

已知:如圖在△ABC中,點D 是BA邊延長線上一動點,點F 在BC上,且,連接DF交AC于點E .

(1)如圖1,當點E恰為DF的中點時,請求出的值;

2如圖2,當時,請求出的值(用含a的代數(shù)式表示).

思考片刻后,同學們紛紛表達自己的想法:

甲:過點F作FG∥AB交AC于點G,構造相似三角形解決問題;

乙:過點F作FG∥AC交AB于點G,構造相似三角形解決問題;

丙:過點D作DG∥BC交CA延長線于點G,構造相似三角形解決問題;

老師說:“這三位同學的想法都可以” .

請參考上面某一種想法,完成第(1)問的求解過程,并直接寫出第(2)問的值.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,EAB邊上一點,且∠A=EDF=60°,有下列結論:①AE=BF;DEF是等邊三角形;③BEF是等腰三角形;④∠ADE=BEF,其中結論正確的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點C順時針旋轉得到DEC,使點A的對應點D恰好落在邊AB上,點B的對應點為E,連接BE,以下四個結論:①ACAD;②ABEB;③BCEC;④∠A=∠EBC,其中一定正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,制作某金屬工具先將材料煅燒6分鐘溫度升到800℃,再停止煅燒進行鍛造,8分鐘溫度降為600℃;煅燒時溫度y℃)與時間xmin)成一次函數(shù)關系;鍛造時溫度y℃)與時間xmin)成反比例函數(shù)關系;該材料初始溫度是32

1)分別求出材料煅燒和鍛造時yx的函數(shù)關系式;

2)根據(jù)工藝要求,當材料溫度低于480℃時,須停止操作,那么鍛造的操作時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案