【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)G,點(diǎn)FCD上一點(diǎn),且滿足,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接ADDE,若CF=2,AF=3.給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tanE;

SDEF.其中正確的是結(jié)論的個(gè)數(shù)是( )

(A)1 (B)2 (C)3 (D)4

【答案】C

【解析】分析:①由垂徑定理證得∠ADF=∠AED;②由垂徑定理證得DGCG;③∠E=∠ADG,RtADG中,求tanADG;④SADF,由AFD∽△ADE,求得SADE;

詳解:①∵AB是⊙O的直徑,弦CDAB,∴DGCG,

∴弧ADAC,∠ADF=∠AED,

∵∠FAD=∠DAE,∴△ADF∽△AED

②∵,CF=2,∴FD=6,

CDDFCF=8,∴CGDG=4,

FGCGCF=2;

RtAFG中,AF=3,FG=2,由勾股定理得AG,

RtADG中,tanADG.

∵∠E=∠ADG所以tanE.

RtADG中,AGDG=4,由勾股定理得AD

SADFDF·AG×6×.

∵∠ADF=∠E,∠DAF=∠EAD,∴△AFD∽△ADE,

,,SADE.

SDEFSADESAFD,∴SDEF

所以正確的結(jié)論是①②④.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)男生的體能情況,體育老師從中隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問(wèn)題:

(1)本次抽測(cè)的男生有________人,抽測(cè)成績(jī)的眾數(shù)是_________;

(2)請(qǐng)將條形圖補(bǔ)充完整;

(3)若規(guī)定引體向上6次以上(含6次)為體能達(dá)標(biāo),則該校125名九年級(jí)男生中估計(jì)有多少人體能達(dá)標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的垂線的尺規(guī)作圖過(guò)程:

已知:直線ll外一點(diǎn)P.(如圖1)

求作:直線l的垂線,使它經(jīng)過(guò)點(diǎn)P.

作法:如圖2

(1)在直線l上任取兩點(diǎn)A,B;

(2)分別以點(diǎn)A,B為圓心,AP,BP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q;

(3)作直線PQ.

所以直線PQ就是所求的垂線.

請(qǐng)回答:該作圖的依據(jù)是_________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點(diǎn)為A,B

1)求拋物線的頂點(diǎn)坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

當(dāng)m1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);

若拋物線在點(diǎn)AB之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的周長(zhǎng)為16, GH分別為AB. AC的中點(diǎn),分別以AB.AC為斜邊向外作RtADBRtAEC,連接DG.GH,EH,DG+GH+EH的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABCO點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn).旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)MBC邊交x軸于點(diǎn)N(如圖1).

(1)求邊AB在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;

(2)設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論;

(3)設(shè)MN=m,當(dāng)m為何值時(shí)△OMN的面積最小,最小值是多少?并直接寫(xiě)出此時(shí)△BMN內(nèi)切圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,

1)求點(diǎn)C到直線AB的距離;

2求海警船到達(dá)事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8cos53°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=2,AD=6,P為邊AD上一點(diǎn),且AP=2,在對(duì)角線BD上尋找一點(diǎn)M,使AM+PM最小,則AM+PM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)10噸時(shí),水價(jià)為每噸1.2元;超過(guò)10噸時(shí),超過(guò)部分按每噸1.8元收費(fèi),該市某戶居民5月份用水,應(yīng)繳水費(fèi)元.

1)寫(xiě)出之間的關(guān)系式;

2)某戶居民若5月份用水16噸,應(yīng)繳水費(fèi)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案