【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=x+b的圖象交于A,B兩點,點A和點B的橫坐標分別為1和﹣2,這兩點的縱坐標之和為1

1)求反比例函數(shù)的表達式與一次函數(shù)的表達式;

2)當點C的坐標為(0,﹣1)時,求△ABC的面積.

【答案】1,y=x+1;(23

【解析】

試題(1)根據(jù)兩點縱坐標的和,可得b的值,根據(jù)自變量與函數(shù)的值得對關(guān)系,可得A點坐標,根據(jù)待定系數(shù)法,可得反比例函數(shù)的解析式;

(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得B點坐標,根據(jù)三角形的面積公式,可得答案.

試題解析:解:(1)由題意,得:1+b+(﹣2)+b=1,解得b=1,一次函數(shù)的解析式為y=x+1,當x=1時,y=x+1=2,即A(1,2),將A點坐標代入,得=2,即k=2,反比例函數(shù)的解析式為

(2)當x=﹣2時,y=﹣1,即B(﹣2,﹣1).

BC=2,SABC=BCyAyC)=×2×[2﹣(﹣1)]=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,以為邊作等邊,延長分別交于點,連接相交于點,給出下列結(jié)論: ;②;③;④;其中正確的是(

A.①②③④B.②③C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有A,BC三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:

線路  

公交車用時的頻數(shù)

公交車用時

30<t

≤35

35<t

≤40

40<t

≤45

45<t

≤50

合計

A

59

151

a

124

500

B

50

b

122

278

500

C

45

265

167

c

500

1)將上面表格補充完整;

2)某天王先生和李女士從甲地到乙地,試用樹狀圖或列表法求在早高峰期間兩人剛好乘坐同一條線路的概率;

3)小張從甲地到乙地,早高峰期間用時不超過45分鐘,請問小張應(yīng)該選擇哪條線路?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,∠BAC90°ABAC

1)如圖1,將線段AC繞點A逆時針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD于點E,連結(jié)CE

①求證:∠AED=∠CED

②用等式表示線段AE、CEBD之間的數(shù)量關(guān)系(直接寫出結(jié)果);

2)在圖2中,若將線段AC繞點A順時針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD的延長線于點E,連結(jié)CE.請補全圖形,并用等式表示線段AE、CE、BD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、每個轉(zhuǎn)盤被分成如圖所示的幾個扇形、游戲者同時轉(zhuǎn)動兩個轉(zhuǎn)盤,如果一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一轉(zhuǎn)盤轉(zhuǎn)出了藍色,游戲者就配成了紫色下列說法正確的是( 。

A. 兩個轉(zhuǎn)盤轉(zhuǎn)出藍色的概率一樣大

B. 如果A轉(zhuǎn)盤轉(zhuǎn)出了藍色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍色的可能性變小了

C. 先轉(zhuǎn)動A 轉(zhuǎn)盤再轉(zhuǎn)動B 轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率不同

D. 游戲者配成紫色的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的函數(shù)表達式是,下列結(jié)論不正確的是(

A.,函數(shù)的最大值是5

B.,當時,yx的增大而增大

C.無論a為何值時,函數(shù)圖象一定經(jīng)過點

D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線的圖象與x軸交于B兩點,與y軸交于點,對稱軸x軸交于點H.

1)求拋物線的函數(shù)表達式

2)直線y軸交于點E,與拋物線交于點P,Q(點Py軸左側(cè),點Q y軸右側(cè)),連接CP,CQ,若的面積為,求點P,Q的坐標.

3)在(2)的條件下,連接ACPQG,在對稱軸上是否存在一點K,連接GK,將線段GK繞點G逆時針旋轉(zhuǎn)90°,使點K恰好落在拋物線上,若存在,請直接寫出點K的坐標不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)ykx+b(k≠0)的圖象與反比例函數(shù)y (n≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于點C,點B 坐標為(m,﹣1),ADx軸,且AD3,tanAOD

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)Ex軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點C、Dx軸上,A、B恰好在二次函數(shù)y2x24的圖象上,則圖中陰影部分的面積之和為( 。

A.6B.8C.10D.12

查看答案和解析>>

同步練習(xí)冊答案