【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,B(5,2),點(diǎn)D是OA的中點(diǎn),動(dòng)點(diǎn)P在線段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)C向B 運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)在直線CB上是否存在一點(diǎn)Q,使得O、D、Q、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)在線段PB上有一點(diǎn)M,且PM=2.5,當(dāng)P運(yùn)動(dòng)多少,四邊形OAMP的周長(zhǎng)最小值為多少,并畫圖標(biāo)出點(diǎn)M的位置.
【答案】(1)t=1.25;(2)①Q(4,2);②Q(1.5,2),③Q(﹣1.5,2);(3)、.
【解析】
(1)先求出OA,進(jìn)而求出OD=2.5,再由運(yùn)動(dòng)知BP=5-2t,進(jìn)而由平行四邊形的性質(zhì)建立方程5-2t=2.5即可得出結(jié)論;
(2)分三種情況討論,利用菱形的性質(zhì)和勾股定理即可得出結(jié)論;
(3)先判斷出四邊形OAMP周長(zhǎng)最小,得出AM+DM最小,即可確定出點(diǎn)M的位置,再用三角形的中位線得出BM,進(jìn)而求出PC,即可得出結(jié)論.
(1)∵四邊形OABC為矩形,B(5,2),
∴BC=OA=5,AB=OC=2,
∵點(diǎn)D時(shí)OA的中點(diǎn),
∴OD=OA=2.5,
由運(yùn)動(dòng)知,PC=2t,
∴BP=BC﹣PC=5﹣2t,
∵四邊形PODB是平行四邊形,
∴PB=OD=2.5,
∴5﹣2t=2.5,
∴t=1.25;
(2)①當(dāng)Q點(diǎn)在P的右邊時(shí),如圖1,
∵四邊形ODQP為菱形,
∴OD=OP=PQ=2.5,
∴在Rt△OPC中,由勾股定理得:PC=1.5,
∴2t=1.5;
∴t=0.75,
∴Q(4,2);
②當(dāng)Q點(diǎn)在P的左邊且在BC線段上時(shí),如圖2,
同①的方法得出t=2,
∴Q(1.5,2),
③當(dāng)Q點(diǎn)在P的左邊且在BC的延長(zhǎng)線上時(shí),如圖3,
同①的方法得出,t=0.5,
∴Q(﹣1.5,2);
(3)t=
如圖4,
由(1)知,OD=2.5,
∵PM=2.5,
∴OD=PM,
∵BC∥OA,
∴四邊形OPMD時(shí)平行四邊形,
∴OP=DM,
∵四邊形OAMP的周長(zhǎng)為OA+AM+PM+OP=5+AM+2.5+DM=7.5+AM+DM,
∴當(dāng)AM+DM最小時(shí),四邊形OAMP的周長(zhǎng)最小,
∴作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)E,連接DE交PB于M,
∴AB=EB,
∵BC∥OA,
∴BM=AD=,
∴PC=BC﹣BM﹣PM=5﹣﹣=,DM+AM=DE===,
∴t=÷2=,周長(zhǎng)的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線AC平分,且AC2=ABAD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,求證:△DAC∽△CAB.
(2)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則∠DAB= °
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:2﹣1+(π﹣3.14)0+sin60°﹣|﹣|
(2)如圖,在△ABC中,AB=AC=10,sinC=,點(diǎn)D是BC上一點(diǎn),且DC=AC.求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊直角三角形的紙片,,,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則的長(zhǎng)為( )
A.4B.3C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCO 是菱形,以點(diǎn) O 為坐標(biāo)原點(diǎn),OC 所在直線為軸建立平面直角坐標(biāo)系.若點(diǎn) A 的坐 標(biāo)為(-5,12),直線 AC、邊 AB 與軸的交點(diǎn)分別是點(diǎn) D 與點(diǎn) E,連接 BD.
(1)求菱形 ABCO 的邊長(zhǎng);
(2)求 BD 所在直線的解析式;
(3)直線 AC 上是否存在一點(diǎn) P 使得與的面積相等?若存在,請(qǐng)直接寫出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)布口袋里裝著白、紅、黑三種顏色的小球,它們除顏色之外沒有任何其它區(qū)別,其中有白球3只、紅球2只、黑球1只.袋中的球已經(jīng)攪勻.
(1)閉上眼睛隨機(jī)地從袋中取出1只球,求取出的球是黑球的概率;
(2)若取出的第1只球是紅球,將它放在桌上,閉上眼睛從袋中余下的球中再隨機(jī)地取出1只球,這時(shí)取出的球還是紅球的概率是多少?
(3)若取出一只球,將它放回袋中,閉上眼睛從袋中再隨機(jī)地取出1只球,兩次取出的球都是白球概率是多少?(用列表法或樹狀圖法計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)(1)班部分學(xué)生接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了如圖①②兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問題.
(1)九年級(jí)(1)班接受調(diào)查的學(xué)生共有多少名?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要利用一面墻(墻長(zhǎng)為25米)建羊圈,用100米的圍欄圍成三個(gè)大小相同的矩形羊圈.
(1)若羊圈總面積為400平方米,求羊圈的邊長(zhǎng)AB, BC各為多少米?
(2) 保持羊圈的基本結(jié)構(gòu),求羊圈總面積最大可以是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點(diǎn)C是弧 AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為點(diǎn)D,E;在點(diǎn)C的運(yùn)動(dòng)過程中,下列說法正確的是( )
A. 扇形AOB的面積為 B. 弧BC的長(zhǎng)為 C. ∠DOE=45° D. 線段DE的長(zhǎng)是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com