【題目】若⊙O和⊙O′內(nèi)切,它們的半徑分別為5和3,則圓心距為
【答案】2
【解析】解:∵兩圓內(nèi)切,它們的半徑分別為3和5,
∴圓心距=5﹣3=2.
所以答案是:2
【考點精析】關(guān)于本題考查的圓與圓的位置關(guān)系,需要了解兩圓之間有五種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交.兩圓圓心之間的距離叫做圓心距.兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r.才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,連接AD,BD,∠A=∠B=30°.
(1)求證:BD是⊙O的切線
(2)如果BD=2求OC的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個兩位數(shù),十位上數(shù)字是x,個位上數(shù)字是y,若把十位上數(shù)字和個位上數(shù)字對調(diào),所得的兩位數(shù)是 ( )
A. yx B. y+x C. 10y+x D. 10x+y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)數(shù)學(xué)活動小組在學(xué)習(xí)了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m,坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E、A、C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù),參考數(shù)據(jù)tan50°=1.1918,cos50°=0.6428)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在圖①中以P為頂點畫∠P,使∠P的兩邊分別和∠1的兩邊垂直;
(2)量一量∠P和∠1的度數(shù),它們之間的數(shù)量關(guān)系是 ;
(3)同樣在圖②和圖③中以P為頂點作∠APB,使∠APB的兩邊分別和∠1的兩邊垂直,分別寫出圖②和圖③中∠APB和∠1之間的數(shù)量關(guān)系(不要求寫出理由).
圖②: ,
圖③: ;
(4)由上述三種情形可以得到一個結(jié)論:如果一個角的兩邊分別和另一個角的兩邊垂直,那么這兩個角 (不要求寫出理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在△ABC中,CA=CB,∠ACB=90°,E,F(xiàn)分別是CA,CB邊的三等分點,將△ECF繞點C逆時針旋轉(zhuǎn)α角(0°<α<90°),得到△MCN,連接AM,BN.
(1)求證:AM=BN;
(2)當(dāng)MA∥CN時,試求旋轉(zhuǎn)角α的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:
①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE .
其中正確結(jié)論有( )個.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班七個興趣小組人數(shù)分別為4,4,5,x,6,6,7.已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)是( 。
A.7
B.6
C.5
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com