【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點(diǎn)H.

(1)判斷線段DE、FG的位置關(guān)系,并說(shuō)明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.

【答案】
(1)

解:FG⊥ED.理由如下:

∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△DBE后,

∴∠DEB=∠ACB,

∵把△ABC沿射線平移至△FEG,

∴∠GFE=∠A,

∵∠ABC=90°,

∴∠A+∠ACB=90°,

∴∠DEB+∠GFE=90°,

∴∠FHE=90°,

∴FG⊥ED;


(2)

證明:根據(jù)旋轉(zhuǎn)和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,

∵CG∥EB,

∴∠BCG=∠CBE=90°,

∴四邊形BCGE是矩形,

∵CB=BE,

∴四邊形CBEG是正方形


【解析】(1)根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進(jìn)而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直;(2)根據(jù)旋轉(zhuǎn)和平移找出對(duì)應(yīng)線段和角,然后再證明是矩形,后根據(jù)鄰邊相等可得四邊形CBEG是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對(duì)稱中心,再畫(huà)出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2 , 并寫(xiě)出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點(diǎn)M從點(diǎn)D出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥AD于點(diǎn)P,連接AC交NP于點(diǎn)Q,連接MQ.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)AM= , AP= . (用含t的代數(shù)式表示)
(2)當(dāng)四邊形ANCP為平行四邊形時(shí),求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時(shí)刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由
②使四邊形AQMK為正方形,則AC等于.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB,CD相交于點(diǎn)O,AD,CB的延長(zhǎng)線交于點(diǎn)E,OA=OC,EA=EC.

(1)試說(shuō)明:∠A=∠C;

(2)在(1)的解答過(guò)程中,需要作輔助線,它的意圖是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,∠B=60°,點(diǎn)G是邊CD邊的中點(diǎn),點(diǎn)E、F分別是AG、AD上的兩個(gè)動(dòng)點(diǎn),則EF+ED的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( 。

A.a3a2a6B.ab32a2b6

C.ab2a2b2D.5a3a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾天氣影響著我國(guó)北方中東部地區(qū),給人們的健康帶來(lái)嚴(yán)重的危害.為了讓人們對(duì)霧霾有所了解.?dāng)z影師張超通過(guò)顯微鏡,將空氣中細(xì)小的霾顆粒放大1000倍,發(fā)現(xiàn)這些霾顆粒平均直徑為10微米20微米,其中20微米(1米=1000000微米)用科學(xué)記數(shù)法可表示為( 。
A.2×105
B.0.2×104
C.2×105
D.2×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張騎自行車勻速?gòu)募椎氐揭业,在途中休息了一段時(shí)間后,仍按原速行駛.他距乙地的距離y(km)與時(shí)間x(h)的關(guān)系如圖中折線所示,小李開(kāi)車勻速?gòu)囊业氐郊椎,比小張晚出發(fā)一段時(shí)間,他距乙地的距離y(km)與時(shí)間x(h)的關(guān)系如圖中線段AB所示.

(1)小李到達(dá)甲地后,再經(jīng)過(guò)_______小時(shí)小張也到達(dá)乙地;小張騎自行車的速度是_______千米/小時(shí).

(2)小張出發(fā)幾小時(shí)與小李相距15千米?

(3)若小李想在小張休息期間與他相遇,則他出發(fā)的時(shí)間x應(yīng)在什么范圍?(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,D,E三點(diǎn)共線,C,B,F三點(diǎn)共線,AB=CD,AD=CB,DE=BF,那么BE與DF之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案