【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題
(1)請直接寫出a、b、c的值.a= , b= , c=
(2)a、b、c所對應的點分別為A、B、C,點P為一動點,其對應的數(shù)為x,點P在0到2之間運動時(即0≤x≤2時),請化簡式子:|x+1|﹣|x﹣1|+2|x+5|(請寫出化簡過程)
(3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
【答案】
(1)-1;1;5
(2)解:當0≤x≤1時,x+1>0,x﹣1≤0,x+5>0,
則:|x+1|﹣|x﹣1|+2|x+5|
=x+1﹣(1﹣x)+2(x+5)
=x+1﹣1+x+2x+10
=4x+10;
當1<x≤2時,x+1>0,x﹣1>0,x+5>0.
∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)
=x+1﹣x+1+2x+10
=2x+12
(3)解:不變.理由如下:
t秒時,點A對應的數(shù)為﹣1﹣t,點B對應的數(shù)為2t+1,點C對應的數(shù)為5t+5.
∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,
∴BC﹣AB=(3t+4)﹣(3t+2)=2,
即BC﹣AB的不隨著時間t的變化而改變.
(另解)∵點A以每秒1個單位長度的速度向左運動,點B每秒2個單位長度向右運動,
∴A、B之間的距離每秒鐘增加3個單位長度;
∵點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動,
∴B、C之間的距離每秒鐘增加3個單位長度.
又∵BC﹣AB=2,
∴BC﹣AB的值不隨著時間t的變化而改變
【解析】解:(1)∵b是最小的正整數(shù),∴b=1. 根據(jù)題意得:c﹣5=0且a+b=0,
∴a=﹣1,b=1,c=5.
故答案是:﹣1;1;5;
【考點精析】解答此題的關鍵在于理解數(shù)軸的相關知識,掌握數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=15,AC=12,BC=9,經過點C且與邊AB相切的動圓與CB、CA分別相交于點E、F,則線段EF長度的最小值是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“我的閱讀生活”校園演講比賽中,有11名學生參加比賽,他們決賽的最終成績各不相同,其中一名學生想知道自己能否進入前6名,除了要了解自己的成績外,還要了解這11名學生成績的( )
A.眾數(shù)
B.方差
C.平均數(shù)
D.中位數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖“L”形的圖形的面積有如下四種表示方法: ①a2﹣b2;②a(a﹣b)+b(a﹣b);③(a+b)(a﹣b); ④(a﹣b)2 .
其中正確的表示方法有( )
A.1種
B.2種
C.3種
D.4種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知三條線的比如下,可以組成三角形的是( )
A. 5:20:30B. 10:20:30
C. 15:15:30D. 20:30:30
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題:
(1)﹣5+(+21)﹣(﹣79)﹣15
(2)2(m﹣3n)﹣(﹣3m﹣2n)
(3)﹣( ﹣ + )÷
(4)﹣ ÷[﹣32×(﹣ )2+2]×(﹣1)2016 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義新運算:對于任意有理數(shù)a,b,都有a※b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.
(1)求(﹣2)※3的值;
(2)若3※x=5※(x﹣1),求x的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com