【題目】體育課上,小明、小強(qiáng)、小華三人在足球場(chǎng)上練習(xí)足球傳球,足球從一個(gè)人傳到另一個(gè)人記為踢一次.如果從小強(qiáng)開(kāi)始踢,經(jīng)過(guò)兩次踢球后,足球踢到小華處的概率是多少?經(jīng)過(guò)三次踢球后,足球踢回到小強(qiáng)處的概率呢?(列表或畫樹(shù)形圖或列舉)

【答案】(1);(2).

【解析】

1)首先根據(jù)題意畫出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與經(jīng)過(guò)兩次踢后,足球踢到了小華處的情況,再利用概率公式求解即可求得答案.

2)首先根據(jù)題意畫出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與經(jīng)過(guò)踢三次后,球踢到了小強(qiáng)處的情況,再利用概率公式求解即可求得答案.

解:(1)根據(jù)題意畫圖如下:

,

∵共有4種等可能的結(jié)果,經(jīng)過(guò)兩次踢后,足球踢到了小華處的有1種情況,

∴足球踢到了小華處的概率是:

2)畫樹(shù)狀圖得:

∵共有8種等可能的結(jié)果,經(jīng)過(guò)踢三次后,球踢到了小強(qiáng)處的有2種情況,

∴經(jīng)過(guò)踢三次后,球踢到了小強(qiáng)處的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點(diǎn)C出發(fā),沿坡度為i1的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測(cè)角儀DE,測(cè)得旗桿頂部A的仰角為30°,量得測(cè)角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測(cè)角儀都與地面垂直.

(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號(hào))

(2)求旗桿AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校開(kāi)展經(jīng)典誦讀比賽活動(dòng),誦讀材料有《論語(yǔ)》、《大學(xué)》、《中庸》(依次用字母AB,C表示這三個(gè)材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時(shí)小禮先從中隨機(jī)抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機(jī)抽取一張卡片,他倆按各自抽取的內(nèi)容進(jìn)行誦讀比賽.

1)小禮誦讀《論語(yǔ)》的概率是   ;(直接寫出答案)

2)請(qǐng)用列表或畫樹(shù)狀圖的方法求他倆誦讀兩個(gè)不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,往豎直放置的在A處由短軟管連接的粗細(xì)均勻細(xì)管組成的U形裝置中注入一定量的水,水面高度為6cm,現(xiàn)將右邊細(xì)管繞A處順時(shí)針旋轉(zhuǎn)60°AB位置,且左邊細(xì)管位置不變,則此時(shí)U形裝置左邊細(xì)管內(nèi)水柱的高度約為(  )

A. 4cmB. 2cmC. 3cmD. 8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線不經(jīng)過(guò)第四象限,且與軸,軸分別交于兩點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)在線段上,其坐標(biāo)為,連結(jié),,若,那么的值為(

A. B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,點(diǎn)E在邊AD上,連接BE,在BE上取點(diǎn)F,連接AF并延長(zhǎng)交BDH,且∠AFE60°,過(guò)CCGBD,直線CG、AF交于G

(1)求證:∠FAE=∠EBA;

(2)求證:AHBE;

(3)AE3BH5,求線段FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在四邊形ABCD中,點(diǎn)O,E,F(xiàn),G分別是AB,BC,CD,AD的中點(diǎn),連接OE,EF,F(xiàn)G,GO,GE.

(1)證明:四邊形OEFG是平行四邊形;

(2)將△OGE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OMN,如圖2所示,連接GM,EN.

OE=,OG=1,求的值;

試在四邊形ABCD中添加一個(gè)條件,使GM,EN的長(zhǎng)在旋轉(zhuǎn)過(guò)程中始終相等.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)M的坐標(biāo)為(0,2),以M為圓心,以4為半徑的圓與x軸相交于點(diǎn)B、C,與y軸正半軸相交于點(diǎn)A過(guò)AAEBC,點(diǎn)D為弦BC上一點(diǎn),AEBD,連接ADEC

(1)B、C兩點(diǎn)的坐標(biāo);

(2)求證:ADCE;

(3)若點(diǎn)P是弧BAC上一動(dòng)點(diǎn)(P點(diǎn)與AB點(diǎn)不重合),過(guò)點(diǎn)P的⊙M的切線PGx軸于點(diǎn)G,若△BPG為直角三角形,試求出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案