【題目】如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn), 與y軸交于C點(diǎn),且A(一1,0).

⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

⑵判斷△ABC的形狀,證明你的結(jié)論;

⑶點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+DM的值最小時(shí),求m的值.

【答案】(1),;(2)是直角三角形;(3).

【解析】

試題分析:(1)把點(diǎn)的坐標(biāo)代入到拋物線解析式,求的值,即可得出拋物線的解析式,根據(jù)頂點(diǎn)坐標(biāo)公式,即可求出頂點(diǎn)坐標(biāo);(2)根據(jù)勾股定理的逆定理可證明是直角三角形;(3)作出點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),連接,即可求出的最小值.

試題解析:(1)點(diǎn)在拋物線上,

,解得

拋物線的解析式為= =

頂點(diǎn)的坐標(biāo)為.

(2)當(dāng)時(shí), ,.

(3)當(dāng)時(shí),,,

,,.,,,

是直角三角形.

(3)作出點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),則,連接軸于點(diǎn),根據(jù)軸對(duì)稱(chēng)性及兩點(diǎn)之間線段最短可知,的值最小。

設(shè)直線的解析式為,

,解得, .

.

當(dāng)時(shí), ,

. .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4的算術(shù)平方根是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下是某手機(jī)店1~4月份的統(tǒng)計(jì)圖,分析統(tǒng)計(jì)圖,對(duì)3、4月份三星手機(jī)的銷(xiāo)售情況四個(gè)同學(xué)得出的以下四個(gè)結(jié)論,其中正確的為(   )

A. 4月份三星手機(jī)銷(xiāo)售額為65萬(wàn)元

B. 4月份三星手機(jī)銷(xiāo)售額比3月份有所上升

C. 4月份三星手機(jī)銷(xiāo)售額比3月份有所下降

D. 3月份與4月份的三星手機(jī)銷(xiāo)售額無(wú)法比較,只能比較該店銷(xiāo)售總額

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. 2(a+b)=2a+2b B. (2b2)3=8b5 C. 3a22a3=6a5 D. a6a4=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABDC,ADBC,E,FDB上兩點(diǎn)且BFDE,若∠AEB=120°,∠ADB=30°,則∠BCF= (  )

A. 150° B. 40° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x2﹣4的圖象與y軸的交點(diǎn)坐標(biāo)是(
A.(2,0)
B.(﹣2,0)
C.(0,4)
D.(0,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一組a ,b 的值說(shuō)明命題:a2=b2,則a=b”是錯(cuò)誤的,這組值可以是a= _________.,b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,C點(diǎn)表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.

(1)a=   ,c=   ;

(2)如圖所示,在(1)的條件下,若點(diǎn)A與點(diǎn)B之間的距離表示為AB=|a﹣b|,點(diǎn)B與點(diǎn)C之間的距離表示為BC=|b﹣c|,點(diǎn)B在點(diǎn)A、C之間,且滿足BC=2AB,則b=   ;

(3)在(1)(2)的條件下,若點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時(shí),此時(shí)x=   ,最小值為   

(4)在(1)(2)的條件下,若在點(diǎn)B處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)C處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A,B,C是數(shù)軸上三點(diǎn),O為原點(diǎn),點(diǎn)C對(duì)應(yīng)的數(shù)為3,BC=2,AB=6.

(1)求點(diǎn)A,B對(duì)應(yīng)的數(shù);

(2)動(dòng)點(diǎn)M,N分別同時(shí)從AC出發(fā),分別以每秒3個(gè)單位和1個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).P為AM的中點(diǎn),Q在CN上,且CQ=CN,設(shè)運(yùn)動(dòng)時(shí)間為tt > 0).

①求點(diǎn)P,Q對(duì)應(yīng)的數(shù)(用含t的式子表示);

②t為何值時(shí)OP=BQ.

查看答案和解析>>

同步練習(xí)冊(cè)答案