【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A、B的坐標(biāo)分別為(6,0),(6,8).動點M、N分別從O、B同時出發(fā),以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點N作NPBC,交AC于P,連接MP.已知動點運動了x秒.

(1)P點的坐標(biāo)為多少;(用含x的代數(shù)式表示)

(2)試求MPA面積的最大值,并求此時x的值;

(3)請你探索:當(dāng)x為何值時,MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.

【答案】1)(6x x);(2)S的最大值為6,此時x=3;(3)

x=2,或x=,或x=

【解析】試題分析:1P點的橫坐標(biāo)與N點的橫坐標(biāo)相同,求出CN的長即可得出P點的橫坐標(biāo),然后通過求直線AC的函數(shù)解析式來得出P點的縱坐標(biāo),由此可求出P點的坐標(biāo);

2)可通過求MPA的面積和x的函數(shù)關(guān)系式來得出MPA的面積最大值及對應(yīng)的x的值.MPA中,MA=OA-OM,而MA邊上的高就是P點的縱坐標(biāo),由此可根據(jù)三角形的面積計算公式求出Sx的函數(shù)關(guān)系式,進而根據(jù)函數(shù)的性質(zhì)得出S的最大值和對應(yīng)的x的值;

3)可分三種情況進行討論:①MP=AP時,延長NPx軸于Q,則有PQOA,那么此時有AQ=BN=MA,由此可求出x的值;②當(dāng)MP=AM時,可根據(jù)MPAM的不同表達式得出一個關(guān)于x的方程即可求出x的值;③當(dāng)PA=PM時,可在直角三角形PMQ中,根據(jù)勾股定理求出x的值.綜上所述可得出符合條件的x的值.

試題解析:1)由題意可知C0,8),又A60),

所以直線AC解析式為:y=x+8,

因為P點的橫坐標(biāo)與N點的橫坐標(biāo)相同為6x,代入直線AC中得y=,

所以P點坐標(biāo)為(6x, x);

2)設(shè)MPA的面積為S,在MPA中,MA=6x,MA邊上的高為x

其中,0≤x6

S=6x×x=x2+6x=x32+6,

S的最大值為6,此時x=3;

3)延長NPx軸于Q,則有PQOA

①若MP=PA,

PQMA,

MQ=QA=x

3x=6,

x=2

②若MP=MA,則MQ=62xPQ=x,PM=MA=6x,

RtPMQ中,

PM2=MQ2+PQ2,

6x2=62x2+x2,

x=

③若PA=AM,

PA=xAM=6x,

x=6x

x=,

綜上所述,x=2,或x=,或x=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形 ABCD 的對角線 AC=4,BD=2,以 AC 為邊作正方形 ACEF,則 BF 的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2mx+(m﹣1)2=0有兩個實數(shù)根x1,x2

1)求m的取值范圍;

2)當(dāng)x12+x22=28時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知平行四邊形ABCD頂點A的坐標(biāo)為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.

(1)求拋物線的表達式;

(2)設(shè)四邊形ABEF的面積為S,請求出S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

(3)如圖2,過點F作FMx軸,垂足為M,交直線AC于P,過點P作PNy軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,AC=BC∠ACB=90°,點DAB的中點,點EAB邊上一點.

1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;

2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中,小格的頂點叫做格點。小華按下列要求作圖:在正方形網(wǎng)格的三條不同的實線上各取一個格點,使其中任意兩點不在同一條實線上;連結(jié)三個格點,使之構(gòu)成直角三角形。小華在左邊的正方形網(wǎng)格中作出了RtABC。請你按照同樣的要求,在右邊的兩個正方形網(wǎng)格中各畫出一個直角三角形,并使三個網(wǎng)格中的直角三角形互不全等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)的圖象為直線,函數(shù)的圖象為直線,直線、分別交軸于點和點,分別交軸于點,相交于點

(1)填空:  ;求直線的解析式為 ;

(2)若點軸上一點,連接,當(dāng)的面積是面積的2倍時,請求出符合條件的點的坐標(biāo);

(3)若函數(shù)的圖象是直線,且、不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點,分別以AC,BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.

(1)如圖1,當(dāng)∠DHC=90°時,求的值;

(2)在(1)的條件下,作點C關(guān)于直線DH的對稱點E,連接AE,BE.求證:CE平分∠AEB.

(3)現(xiàn)將圖1中的△DCB繞點C順時針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點C關(guān)于直線DH的對稱點為E,則(2)中的結(jié)論是否還成立,并證明.

查看答案和解析>>

同步練習(xí)冊答案