精英家教網 > 初中數學 > 題目詳情
數學課上,張老師給出了問題:如圖(1),四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角∠DCG的平分線CF 于點F,求證:AE=EF。
經過思考,小明展示了一種正確的解題思路:取AB 的中點M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF,在此基礎上,同學們作了進一步探究:
(1)小穎提出:如圖(2),如果把“點E是邊BC的中點” 改為“點E是邊BC上(除B、C外)的任意一點”,其他條件不變,那么結論“AE= EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖(3),點E是BC的延長線上(除C 點外)的任意一點,其他條件不變,結論“AE=EF” 仍然成立,你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
解:(1)正確,
證明:如圖(1),在AB上取一點M,使AM=EC,連接ME,
∴BM=BE,
∴∠BME=45°,
∴∠AME=135°,
∵CF是正方形外角∠DCG的平分線, 
∴∠DCF=45°, 
∴∠BCF=135°, 
∴∠AME=∠ECF,
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF,
∴△AME≌△ECF(ASA),
∴AE=EF;
(2)正確,
證明:如圖(2),
在BA的延長線上取一點N,使AN=CE,連接NE,
∴BN=BE,
∴∠N=∠FCE=45°,
∵四邊形ABCD是正方形,
∴AD∥BE,
∴∠DAE=∠BEA,
∴∠NAE=∠CEF,
∴△ANE≌△ECF(ASA),
∴AE=EF。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

數學課上,張老師給出了問題:
如圖(1),△ABC為等邊三角形,動點D在邊CA上,動點P邊BC上,若這兩點分別從C、B點同時出發(fā),以相同的速度由C向A和由B向C運動,連接AP,BD交于點Q,兩點運動過程中AP=BD成立嗎?請證明你的結論;
經過思考,小明展示了一種正確的解題思路:由△ABP≌△BCD,從而得出AP=BD.
在此基礎上,同學們作了進一步探究:
(1)小穎提出:如果把原題中“動點D在邊CA上,動點P邊BC上,”改為“動點D,P在射線CA和射線BC上運動”,其他條件不變,如圖(2)所示,兩點運動過程中∠BQP的大小保持不變.請你利用圖(2)的情形,求證:∠BQP=60°;
(2)小華提出:如果把原題中“動點P在邊BC上”改為“動點P在AB的延長線上運動,連接PD交BC于E”,其他條件不變,如圖(3),則動點D,P在運動過程中,DE始終等于PE.你認為小華的觀點正確嗎?如果正確,寫出證明過程.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

數學課上張老師和學生們做了一個數字游戲,老師手里拿了一枝筆說:“現在你們學習了二次根式,如果x表示
10
的整數部分,y代表它的小數部分,我這枝筆的價格是(
10
+x)y元,那么你們猜一下這枝筆的價格是多少?誰猜對了,這枝筆就獎給誰”你能猜出這枝筆的價格嗎?

查看答案和解析>>

科目:初中數學 來源:數學教研室 題型:044

數學課上,胡老師給同學們出了一道題:“將300張同樣厚的紙疊在一起,厚度為厘米,要疊成54厘米厚的紙層,需要這樣的約多少張?”小杰同學想了一會,不知道答案,你能幫助小杰同學回答這個問題嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

數學課上,張老師給出了問題:
如圖(1),△ABC為等邊三角形,動點D在邊CA上,動點P邊BC上,若這兩點分別從C、B點同時出發(fā),以相同的速度由C向A和由B向C運動,連接AP,BD交于點Q,兩點運動過程中AP=BD成立嗎?請證明你的結論;
經過思考,小明展示了一種正確的解題思路:由△ABP≌△BCD,從而得出AP=BD.
在此基礎上,同學們作了進一步探究:
(1)小穎提出:如果把原題中“動點D在邊CA上,動點P邊BC上,”改為“動點D,P在射線CA和射線BC上運動”,其他條件不變,如圖(2)所示,兩點運動過程中∠BQP的大小保持不變.請你利用圖(2)的情形,求證:∠BQP=60°;
(2)小華提出:如果把原題中“動點P在邊BC上”改為“動點P在AB的延長線上運動,連接PD交BC于E”,其他條件不變,如圖(3),則動點D,P在運動過程中,DE始終等于PE.你認為小華的觀點正確嗎?如果正確,寫出證明過程.

查看答案和解析>>

同步練習冊答案