【題目】某汽車的功率P為一定值,汽車行駛時的速度v(m/s)與它所受的牽引力F(N)之間的函數(shù)關系式如圖所示.
(1)這輛汽車的功率是多少?請寫出這一函數(shù)的表達式;
(2)當它所受的牽引力為1200 N時,汽車的速度為多少千米/時?
(3)如果限定汽車的速度不超過30 m/s,則F在什么范圍內(nèi)?
【答案】(1)6×104W,v=;(2)180km/h;(3)F應大于等于2000 N.
【解析】
(1)設v與F之間的函數(shù)關系式為v=,把(3000,20)代入即可;
(2)當F=1200牛時,求出v即可;
(3)計算出v=30時的F值,F不小于這個值即可.
(1)設v與F之間的函數(shù)關系式為v=,把(3000,20)代入v=得,P=60000,
∴這輛汽車的功率是60000瓦;這一函數(shù)的表達式為:v=;
(2)把F=1200牛代入v===50(米/秒);
∴v的速度是3600×50÷1000=180千米/時,
(3)把v≤30代入v=得:F≥2000(牛),
∴F≥2000牛.
科目:初中數(shù)學 來源: 題型:
【題目】在一次質(zhì)檢抽測中,隨機抽取某攤位20袋食鹽,測得各袋的質(zhì)量分別為(單位:g):492,496,494,495,498,497,501,502,504,496,497,503,506,508,507,492,496,500,501,499,根據(jù)以上抽測結果,任買一袋該攤位的食鹽,質(zhì)量在497.5 g~501.5 g之間的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,以點O為圓心的經(jīng)過AB的中點C,連接OC,直線AO與相交于點E,D,OB交于點F,P是的中點,連接CE,CF,BP.
求證:AB是的切線;
若,則
當______時,四邊形OECF是菱形;
當______時,四邊形OCBP是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠AFC,以下結論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°—∠ABD;④∠BDC=∠BAC,其中正確的結論有_____________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】著名的恩施大峽谷(A)和世界級自然保護區(qū)星斗山(B)位于筆直的滬渝高速公路X同側(cè),AB=50km,A、B到直線X的距離分別為10km和40km,要在滬渝高速公路旁修建一服務區(qū)P,向A、B兩景區(qū)運送游客.小民設計了兩種方案,圖1是方案一的示意圖(AP與直線X垂直,垂足為P),P到A、B的距離之和S1=PA+PB,圖2是方案二的示意圖(點A關于直線X的對稱點是A',連接BA′交直線X于點P),P到A、B的距離之和S2=PA+PB
(1)S1=_____km.S2=_____km.
(2)PA+PB的最小值為_____km.
(3)擬建的恩施到張家界高速公路與滬渝高速公路垂直,建立如圖3所示的直角坐標系,B到直線的距為30km,請你在X旁和P旁各修建一服務區(qū)P、Q,使P、A、B、Q組成的四邊形的周長最小,(用尺畫出點P和點Q的位置)這個最小值為_____km.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,居民樓與馬路是平行的,在一樓的點A處測得它到馬路的距離為9m,已知在距離載重汽車41m處就可受到噪聲影響.
(1)試求在馬路上以4m/s速度行駛的載重汽車,能給一樓A處的居民帶來多長時間的噪音影響?
(2)若時間超過25秒,則此路禁止該車通行,你認為載重汽車可以在這條路上通行嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點E,點F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)請你判斷AE、AF與BE之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當P運動到B點時,P、Q兩點同時停止運動.設P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關系的圖象是【 】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在AB上,點E在AC上,BE、CD相交于點O.
(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數(shù);
(2)試猜想∠BOC與∠A+∠B+∠C之間的關系,并證明你猜想的正確性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com