【題目】媽媽要榨果汁,她有蘋果、橙子、雪梨三種水果,且其顆數(shù)比為 9:7:6, 她榨完果汁后,蘋果、橙子、雪梨的顆數(shù)比變?yōu)?/span> 6:3:4,已知媽媽榨果汁時(shí)沒(méi)有使用雪梨, 小明根據(jù)他的發(fā)現(xiàn)利用所學(xué)的數(shù)學(xué)知識(shí)推斷出媽媽榨果汁時(shí)只使用了橙子,媽媽告訴小明他的推斷是完全正確的。請(qǐng)你嘗試寫出小明的推斷過(guò)程。
【答案】見(jiàn)解析
【解析】
由題意可設(shè)設(shè)蘋果為 9x 顆,橙子 7x 顆,雪梨 6x 顆(x 是正整數(shù)),再根據(jù)榨果汁時(shí)沒(méi)有使用雪梨,繼而可設(shè)榨完果汁后,蘋果 a 顆,橙子 b 顆,再根據(jù)榨完果汁后,蘋果、橙子、雪梨的顆數(shù)比變?yōu)?/span> 6:3:4,列式進(jìn)行計(jì)算求得蘋果、橙子的用量即可得出結(jié)論.
∵蘋果、橙子、雪梨三種水果,且其顆數(shù)比為 9:7:6,
∴設(shè)蘋果為 9x 顆,橙子 7x 顆,雪梨 6x 顆(x 是正整數(shù)),
∵榨果汁時(shí)沒(méi)有使用雪梨,
∴設(shè)榨完果汁后,蘋果 a 顆,橙子 b 顆,
∵榨完果汁后,蘋果、橙子、雪梨的顆數(shù)比變?yōu)?/span> 6:3:4,
∴,,
∴a=9x,b=x,
∴蘋果的用量為 9x﹣a=9x﹣9x=0,
橙子的用量為 7x﹣b=7x﹣x=x>0,
∴她榨果汁時(shí),只用了橙子.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有足夠多的長(zhǎng)方形和正方形卡片,如下圖:
(1)如果選取1號(hào)、2號(hào)、3號(hào)卡片分別為1張、2張、3張,可拼成一個(gè)長(zhǎng)方形(不重疊無(wú)縫隙),請(qǐng)畫出這個(gè)長(zhǎng)方形的草圖,并運(yùn)用拼圖前后面積之間的關(guān)系說(shuō)明這個(gè)長(zhǎng)方形的代數(shù)意義.
這個(gè)長(zhǎng)方形的代數(shù)意義是 .
(2)小明想用類似方法解釋多項(xiàng)式乘法(a+3b)(2a+b)=2a2+7ab+3b2 , 那么需用2號(hào)卡片張,3號(hào)卡片張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的情景對(duì)話,然后解答問(wèn)題:
(1)根據(jù)“奇異三角形”的定義,請(qǐng)你判斷小華提出的命題:“等邊三角形一定是奇異三角形”是真命題還是假命題?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與點(diǎn)A、B重合),D是半圓 的中點(diǎn),C、D在直徑AB的兩側(cè),若在⊙O內(nèi)存在點(diǎn)E,使AE=AD,CB=CE. ①求證:△ACE是奇異三角形;
②當(dāng)△ACE是直角三角形時(shí),求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班師生組織植樹活動(dòng),上午8時(shí)從學(xué)校出發(fā),到植樹地點(diǎn)植樹后原路返校,如圖為師生離校路程s與時(shí)間t之間的圖象.請(qǐng)回答下列問(wèn)題:
(1)求師生何時(shí)回到學(xué)校?
(2)如果運(yùn)送樹苗的三輪車比師生遲半小時(shí)出發(fā),與師生同路勻速前進(jìn),早半小時(shí)到達(dá)植樹地點(diǎn),請(qǐng)?jiān)趫D中,畫出該三輪車運(yùn)送樹苗時(shí),離校路程s與時(shí)間t之間的圖象,并結(jié)合圖象直接寫出三輪車追上師生時(shí),離學(xué)校的路程;
(3)如果師生騎自行車上午8時(shí)出發(fā),到植樹地點(diǎn)后,植樹需2小時(shí),要求14時(shí)前返回到學(xué)校,往返平均速度分別為每時(shí)10km、8km.現(xiàn)有A、B、C、D四個(gè)植樹點(diǎn)與學(xué)校的路程分別是13km、15km、17km、19km,試通過(guò)計(jì)算說(shuō)明哪幾個(gè)植樹點(diǎn)符合要求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) A,O,B 在同一條直線上,OD,OE 分別平分∠AOC 和∠BOC.
(1)求∠DOE 的度數(shù);
(2)如果∠COD=65°,求∠AOE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購(gòu)買200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購(gòu)物券30元.
(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購(gòu)物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,點(diǎn)O是AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請(qǐng)猜測(cè)OE與OF的大小關(guān)系,并說(shuō)明你的理由;
(2)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?寫出推理過(guò)程;
(3)點(diǎn)O運(yùn)動(dòng)到何處且△ABC滿足什么條件時(shí),四邊形AECF是正方形?(寫出結(jié)論即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,下列三角形中,AB=AC,則經(jīng)過(guò)三角形的一個(gè)頂點(diǎn)的一條直線 能夠?qū)⑦@個(gè)三角形分成兩個(gè)小等腰三角形的是( )
A. ①③④ B. ①②③④ C. ①②④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OP是∠BOC的平分線,EO⊥AB于點(diǎn)O,F(xiàn)O⊥CD于點(diǎn)O.
(1)圖中除直角外,還有其他相等的角,請(qǐng)寫出兩對(duì):①______________;②______________.
(2)如果∠AOD=40°,那么:
①根據(jù)__________,可得∠BOC=________;
②求∠POF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com