【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= ,對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)∠AOF=90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,AF與CE總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)∠AOF度數(shù).
【答案】
(1)當(dāng)∠AOF=90°時(shí),AB∥EF,
∵AF∥BE,
∴四邊形ABEF是平行四邊形
(2)證明:∵四邊形ABEF是平行四邊形,
∴AO=CO,AF∥EC,
∴∠FAO=∠ECO,
在△AOF和△COE中,
,
∴△AOF≌△COE,
∴AF=CE.
(3)解:結(jié)論:四邊形BEDF可能是菱形.
∵△AOF≌△COE,
∴OE=OF,
∴EF與BD互相平分,
∴四邊形BEDF是平行四邊形,
∴當(dāng)EF⊥BD時(shí),四邊形BEDF是菱形,
在Rt△ABC中,AC= =2,
∴OA=1=AB,
∵AB⊥AC,
∴∠AOB=45°,
∴∠AOF=45°,
∴當(dāng)四邊形BEDF是菱形時(shí),∠AOF=45°.
【解析】(1)根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形即可證明.(2)只要證明△AOF≌△COE即可.(3)結(jié)論:四邊形BEDF可能是菱形.根據(jù)菱形的對(duì)角線互相垂直即可解決問(wèn)題.
【考點(diǎn)精析】掌握平行四邊形的判定與性質(zhì)和菱形的判定方法是解答本題的根本,需要知道若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一服裝批發(fā)店出售某品牌童裝,每件進(jìn)價(jià)120元,批發(fā)價(jià)200元,多買(mǎi)優(yōu)惠;凡是一次買(mǎi)10件以上的,每多買(mǎi)一件,所買(mǎi)的全部服裝每件就降低1元,但是最低價(jià)為為每件160元,
(1)求一次至少買(mǎi)多少件,才能以最低價(jià)購(gòu)買(mǎi)?
(2)寫(xiě)出服裝店一次銷售x件時(shí),獲利潤(rùn)y(元)與x(件)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)一天,甲批發(fā)了46件,乙批發(fā)了50件,店主卻發(fā)現(xiàn)賣46件賺的錢(qián)反而比賣50件賺的錢(qián)多,你能用數(shù)學(xué)知識(shí)解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價(jià)每件160元至少提高到多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對(duì)移動(dòng)電話采取不同的收費(fèi)方式,其中,所使用的“便民卡”與“如意卡”在某市范圍內(nèi)每月(30天)的通話時(shí)間x(min)與通話費(fèi)y(元)的關(guān)系如圖所示:
(1)分別求出通話費(fèi)y1,y2與通話時(shí)間x之間的函數(shù)關(guān)系式;
(2)請(qǐng)幫用戶計(jì)算,在一個(gè)月內(nèi)使用哪一種卡便宜.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD對(duì)角線AC上一點(diǎn),EF⊥AB,EG⊥BC,垂足分別為E,F(xiàn),若正方形ABCD的周長(zhǎng)是40cm.
(1)求證:四邊形BFEG是矩形;
(2)求四邊形EFBG的周長(zhǎng);
(3)當(dāng)AF的長(zhǎng)為多少時(shí),四邊形BFEG是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)(1,m),(2,n)都在函數(shù)y=﹣2x+1的圖象上,則m、n的大小關(guān)系是( 。
A. m=n B. m<n C. m>n D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測(cè)試中他們的成績(jī)統(tǒng)計(jì)如下表:
跳繩數(shù)/個(gè) | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個(gè))分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫(xiě)完整,并補(bǔ)全頻數(shù)分布直方圖;
(2)這個(gè)班同學(xué)這次跳繩成績(jī)的眾數(shù)是 個(gè),中位數(shù)是 個(gè);
(3)若跳滿90個(gè)可得滿分,學(xué)校初三年級(jí)共有720人,試估計(jì)該中學(xué)初三年級(jí)還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,周長(zhǎng)為24,AC邊上的中線BD把△ABC分成周長(zhǎng)差為6的兩個(gè)三角形,則△ABC各邊的長(zhǎng)分別為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com