【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的1.5倍,兩人各加工300個(gè)這種零件,甲比乙少用5天.
(1)求甲、乙兩人每天各加工多少個(gè)這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是150元和120元,現(xiàn)有1500個(gè)這種零件的加工任務(wù),甲單獨(dú)加工一段時(shí)間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)為7800元,那么甲、乙各加工了多少天?
【答案】(1)甲每天加工30個(gè)零件,乙每天加工20個(gè)零件;(2)甲加工了40天,乙加工了15天.
【解析】
(1)設(shè)乙每天加工x個(gè)零件,則甲每天加工1.5x個(gè)零件,根據(jù)甲比乙少用5天,列分式方程求解;
(2)設(shè)甲加工了a天,乙加工了b天,根據(jù)1500個(gè)零件,列方程;根據(jù)總加工費(fèi)為7800元,列方程,解出a,b即可.
解:(1)設(shè)乙每天加工x個(gè)零件,則甲每天加工1.5x個(gè)零件,由題意得:
去分母得:300×1.5=300+5×1.5x
解得x=20
經(jīng)檢驗(yàn),x=20是分式方程的解且符合實(shí)際意義.
∴1.5x=30
答:甲每天加工30個(gè)零件,乙每天加工20個(gè)零件.
(2)設(shè)甲加工了a天,乙加工了b天,則由題意得
解得:a=40,b=15,
當(dāng)a=40時(shí),b=15,符合問題的實(shí)際意義.
答:甲加工了40天,乙加工了15天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m<0.
(1)求點(diǎn)E、F的坐標(biāo)(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖2,設(shè)拋物線y=a(x﹣m+6)2+h經(jīng)過A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM=90°,求a、h、m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在同一直角坐標(biāo)系xOy中,有雙曲線,直線y2=k2x+b1,y3=k3x+b2,且點(diǎn)A(2,5),點(diǎn)B(﹣6,n)在雙曲線的圖象上
(1)求y1和y2的解析式;
(2)若y3與直線x=4交于雙曲線,且y3∥y2,求y3的解析式;
(3)直接寫出的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點(diǎn),點(diǎn)為拋物線的頂點(diǎn),拋物線的對(duì)稱軸與軸交于點(diǎn).
(1)求拋物線的解析式;
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)作勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為,過點(diǎn)作,交于點(diǎn),以為正方形的一邊,向上作正方形,邊交于點(diǎn),延長(zhǎng)交于點(diǎn).
①當(dāng)為何值時(shí),點(diǎn)落在拋物線上;
②在點(diǎn)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得四邊形為平行四邊形?若存在,求出此時(shí)刻的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn),且點(diǎn)與點(diǎn)的坐標(biāo)分別為,,點(diǎn)是拋物線的頂點(diǎn).
(1)求二次函數(shù)的關(guān)系式.
(2)點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn).若,的面積為.
①求與的函數(shù)關(guān)系式,寫出自變量的取值范圍.
②當(dāng)取得最值時(shí),求點(diǎn)的坐標(biāo).
(3)在上是否存在點(diǎn),使為直角三角形?如果存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c交x軸于A(-4,0)、B(2,0),在y軸上有一點(diǎn) E(0,-2),連接AE.
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)D是第二象限內(nèi)的拋物線上一動(dòng)點(diǎn).若tan∠AED=,求此時(shí)點(diǎn)D坐標(biāo);
(3)連接AC,點(diǎn)P是線段CA上的動(dòng)點(diǎn),連接OP,把線段PO繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至PQ,點(diǎn)Q是點(diǎn)O的對(duì)應(yīng)點(diǎn).當(dāng)動(dòng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A時(shí),判斷動(dòng)點(diǎn)Q的軌跡并求動(dòng)點(diǎn)Q所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃組織學(xué)生參加“書法”、“攝影”、“航!、“圍棋”四個(gè)課外興趣小組,要求每人必須參加,并且只能選擇其中一個(gè)小組,為了解學(xué)生對(duì)四個(gè)課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(部分信息未給出),請(qǐng)你根據(jù)給出的信息解答下列問題:
(1)求參加這次問卷調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù));
(2)m=_______,n=_______;
(3)若該校共有1200名學(xué)生,試估計(jì)該校選擇“圍棋”課外興趣小組的學(xué)生有多少人?
(4)分別用A、B、C、D表示“書法”、“攝影”、“航!、“圍棋”,小明和小紅從中各選取一個(gè)小組,請(qǐng)用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與直線交于點(diǎn),點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是軸上方拋物線上一點(diǎn),點(diǎn)是直線上一點(diǎn),若以為頂點(diǎn)的四邊形是以 為邊的平行四邊形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與直線交于點(diǎn),直線與軸交于點(diǎn).
(1)求該拋物線的解析式.
(2)點(diǎn)是拋物線上第四象限上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).
(3)將拋物線的對(duì)稱軸向左平移3個(gè)長(zhǎng)度單位得到直線,點(diǎn)是直線上一點(diǎn),連接,,若直線上存在使最大的點(diǎn),請(qǐng)直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com